研究论文介绍 – 新利18网址 //www.gsbet888.com Mon, 11 Nov 2024 23:40:01 +0000 en-US hourly 1 https://wordpress.org/?v=6.5.5 134510799 Greenfield组Angew:亚胺光开关的区位化学和官能化 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/11/greenfield%e7%bb%84angew%ef%bc%9a%e4%ba%9a%e8%83%ba%e5%85%89%e5%bc%80%e5%85%b3%e7%9a%84%e5%8c%ba%e4%bd%8d%e5%8c%96%e5%ad%a6%e5%92%8c%e5%ae%98%e8%83%bd%e5%8c%96.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/11/greenfield%e7%bb%84angew%ef%bc%9a%e4%ba%9a%e8%83%ba%e5%85%89%e5%bc%80%e5%85%b3%e7%9a%84%e5%8c%ba%e4%bd%8d%e5%8c%96%e5%ad%a6%e5%92%8c%e5%ae%98%e8%83%bd%e5%8c%96.html#respond CS editor Mon, 11 Nov 2024 23:30:45 +0000 研究论文介绍 //www.gsbet888.com/?p=51654 作者:邬佳蓉 导读 近日,德国维尔茨堡大学Greenfield课题组详细研究并展示了调节亚胺光开关(AIP)的分子设计策略,例如通过研究在苯环邻位和对位上引入不同的吸电子基团(EWG)和给电子基团(EDG),建立了一套调节光物理性能的设计规则,使其能够适应不同的应用场景。此研究发表在 Angew. Chem. Int. Ed.上。 Switching Sides: Regiochemistry and Functionalization Dictate the Photoswitching Properties of Imines J. Wu, L. Kreimendahl, J. L. Greenfield* Angew. Chem. Int. Ed. 2024, e202415464. Doi:10.1002/anie.202415464   正文 与传统的偶氮类光开关相比,亚胺光开关的独特性不仅在于其动态共价键,使其可作为光驱动的非平衡稳态信息棘轮发挥作用(J. Am. Chem. Soc., 2024, 146, 30, 20720–20727),同时也在于其分子骨架及电子结构。由于这些结构差异,亚胺光开关具有不同于偶氮类似物的光谱响应特性、热稳定性及光致异构化动力学。Greenfield课题组在此前发表于Chemical Science发表的论文(Chem. Sci., 2024,15, 3872-3878)中探索了吡唑环以及芳环上的吡咯取代基对于亚胺光开关性能的显著提升,使得其在可见光条件下可以达到近乎完全的E → Z异构,并显著提升Z构型的热力学半衰期。值得注意的是,优化亚胺光开关的分子设计策略与偶氮类似物并不相同,这是因为在偶氮化合物中,-N=N-存在孤对电子-孤对电子互斥作用,而在亚胺分子中,碳氢单键的存在削弱了这一互斥作用。同时,由于亚胺键(-C=N-)具有不对称性,使其具有不同于偶氮类似物的区位异构体,对光开关性能提供了额外的调控手段。因此,本文详细研究并展示了调节亚胺光开关(AIP)的分子设计策略,例如通过研究在苯环邻位和对位上引入不同的吸电子基团(EWG)和给电子基团(EDG),建立了一套调节光物理性能的设计规则,使其能够适应不同的应用场景。 同时,本课题成功调控Z构型亚胺分子的热力学半衰期至长达25小时,使得获取介稳态Z构型亚胺分子的单晶结构成为可能(如图),这也是有史以来报道过的第一个光致Z构型醛亚胺的单晶结构。这一成果为进一步理解Z-异构体的结构特征及其稳定机制提供了重要的实验依据。 为了延长AIP的热力学半衰期(t1/2),有两种主要策略:稳定Z-异构体,或使过渡态(TS)不稳定。对于两个模型体系,1a(N-吡唑)和2a(N-苯基),计算和实验研究揭示了控制它们热力学半衰期的不同机制。在N-吡唑衍生物中,热力学半衰期主要由Z-异构体的稳定性决定,这是由于它们的过渡态倾向于采用平面几何结构,因而较少受苯环官能化影响。而对于N-苯基衍生物,热力学半衰期主要受到过渡态能量的影响,这种行为与N-苯基的过渡态表现出垂直几何结构的特征一致 调节光开关特性的设计规则: 通过对N-吡唑和N-苯基AIP各自的邻位或对位取代基(包括吸电子和给电子基团)进行详细研究,我们总结出了一系列优化亚胺光开关的设计规则(如图): 固相中的光开关性能 通常,光致异构化分子在溶液中表现出较好的光开关性能,但在固态或薄膜中,由于分子间紧密堆积和运动限制,异构化过程往往受阻。然而,通过spin-coating将AIP分子沉积在石英基底上,成功实现了接近溶液状态下的光开关效率。 实验结果表明,制备的AIP薄膜在固态下能够达到Z-异构体含量的90%,这接近溶液中的95%。尽管薄膜中的Z-异构体半衰期比溶液中有所缩短,但这种在凝聚态下高效光开关行为的实现,证明了AIP材料在智能涂层、分子存储和光控材料等领域的巨大潜力。 本研究的见解为进一步设计具有定制化光开关特性的亚胺光开关奠定了基础,也为我们将来进一步探索这些系统的光控动态共价化学,并确定诸如几何形状和亚稳态的稳定性等特性如何影响动态共价化学系统在光照射下的行为提供了方向。同时,我们也在积极探索更多基于亚胺的光控开关及其潜在应用,感兴趣者欢迎联系jake.greenfield@uni-wuerzburg.de. Chem-Station编辑部招募优秀的小编和审核人员,望有意者将联系方式发至chemstationchina@126.com 本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载. 关注Chem-Station抖音号:79473891841 请登陆TCI试剂官网查看更多内容 https://www.tcichemicals.com/CN/zh/

作者:邬佳蓉

导读

近日,德国维尔茨堡大学Greenfield课题组详细研究并展示了调节亚胺光开关(AIP)的分子设计策略,例如通过研究在苯环邻位和对位上引入不同的吸电子基团(EWG)和给电子基团(EDG),建立了一套调节光物理性能的设计规则,使其能够适应不同的应用场景。此研究发表在 Angew. Chem. Int. Ed.上。

Switching Sides: Regiochemistry and Functionalization Dictate the Photoswitching Properties of Imines

J. Wu, L. Kreimendahl, J. L. Greenfield*

Angew. Chem. Int. Ed. 2024, e202415464. Doi:10.1002/anie.202415464

 

正文

与传统的偶氮类光开关相比,亚胺光开关的独特性不仅在于其动态共价键,使其可作为光驱动的非平衡稳态信息棘轮发挥作用(J. Am. Chem. Soc., 2024, 146, 30, 20720–20727),同时也在于其分子骨架及电子结构。由于这些结构差异,亚胺光开关具有不同于偶氮类似物的光谱响应特性、热稳定性及光致异构化动力学。Greenfield课题组在此前发表于Chemical Science发表的论文(Chem. Sci., 2024,15, 3872-3878)中探索了吡唑环以及芳环上的吡咯取代基对于亚胺光开关性能的显著提升,使得其在可见光条件下可以达到近乎完全的E Z异构,并显著提升Z构型的热力学半衰期。值得注意的是,优化亚胺光开关的分子设计策略与偶氮类似物并不相同,这是因为在偶氮化合物中,-N=N-存在孤对电子-孤对电子互斥作用,而在亚胺分子中,碳氢单键的存在削弱了这一互斥作用。同时,由于亚胺键(-C=N-)具有不对称性,使其具有不同于偶氮类似物的区位异构体,对光开关性能提供了额外的调控手段。因此,本文详细研究并展示了调节亚胺光开关(AIP)的分子设计策略,例如通过研究在苯环邻位和对位上引入不同的吸电子基团(EWG)和给电子基团(EDG),建立了一套调节光物理性能的设计规则,使其能够适应不同的应用场景。

同时,本课题成功调控Z构型亚胺分子的热力学半衰期至长达25小时,使得获取介稳态Z构型亚胺分子的单晶结构成为可能(如图),这也是有史以来报道过的第一个光致Z构型醛亚胺的单晶结构。这一成果为进一步理解Z-异构体的结构特征及其稳定机制提供了重要的实验依据。

为了延长AIP的热力学半衰期(t1/2),有两种主要策略:稳定Z-异构体,或使过渡态(TS)不稳定。对于两个模型体系,1a(N-吡唑)和2a(N-苯基),计算和实验研究揭示了控制它们热力学半衰期的不同机制。在N-吡唑衍生物中,热力学半衰期主要由Z-异构体的稳定性决定,这是由于它们的过渡态倾向于采用平面几何结构,因而较少受苯环官能化影响。而对于N-苯基衍生物,热力学半衰期主要受到过渡态能量的影响,这种行为与N-苯基的过渡态表现出垂直几何结构的特征一致

调节光开关特性的设计规则

通过对N-吡唑和N-苯基AIP各自的邻位或对位取代基(包括吸电子和给电子基团)进行详细研究,我们总结出了一系列优化亚胺光开关的设计规则(如图):

固相中的光开关性能

通常,光致异构化分子在溶液中表现出较好的光开关性能,但在固态或薄膜中,由于分子间紧密堆积和运动限制,异构化过程往往受阻。然而,通过spin-coating将AIP分子沉积在石英基底上,成功实现了接近溶液状态下的光开关效率。

实验结果表明,制备的AIP薄膜在固态下能够达到Z-异构体含量的90%,这接近溶液中的95%。尽管薄膜中的Z-异构体半衰期比溶液中有所缩短,但这种在凝聚态下高效光开关行为的实现,证明了AIP材料在智能涂层、分子存储和光控材料等领域的巨大潜力。

本研究的见解为进一步设计具有定制化光开关特性的亚胺光开关奠定了基础,也为我们将来进一步探索这些系统的光控动态共价化学,并确定诸如几何形状和亚稳态的稳定性等特性如何影响动态共价化学系统在光照射下的行为提供了方向。同时,我们也在积极探索更多基于亚胺的光控开关及其潜在应用,感兴趣者欢迎联系jake.greenfield@uni-wuerzburg.de.

Chem-Station编辑部招募优秀的小编和审核人员,望有意者将联系方式发至chemstationchina@126.com

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载.

关注Chem-Station抖音号:79473891841

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/11/greenfield%e7%bb%84angew%ef%bc%9a%e4%ba%9a%e8%83%ba%e5%85%89%e5%bc%80%e5%85%b3%e7%9a%84%e5%8c%ba%e4%bd%8d%e5%8c%96%e5%ad%a6%e5%92%8c%e5%ae%98%e8%83%bd%e5%8c%96.html/feed 0 51654
「Spotlight Research」 硫键辅助Rh(II)/胍协同催化α-重氮酯的对映选择性Se-S键插入反应 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/11/%e3%80%8cspotlight-research%e3%80%8d-%e7%a1%ab%e9%94%ae%e8%be%85%e5%8a%a9rhii-%e8%83%8d%e5%8d%8f%e5%90%8c%e5%82%ac%e5%8c%96%ce%b1-%e9%87%8d%e6%b0%ae%e9%85%af%e7%9a%84%e5%af%b9%e6%98%a0%e9%80%89.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/11/%e3%80%8cspotlight-research%e3%80%8d-%e7%a1%ab%e9%94%ae%e8%be%85%e5%8a%a9rhii-%e8%83%8d%e5%8d%8f%e5%90%8c%e5%82%ac%e5%8c%96%ce%b1-%e9%87%8d%e6%b0%ae%e9%85%af%e7%9a%84%e5%af%b9%e6%98%a0%e9%80%89.html#respond CS editor Sat, 09 Nov 2024 01:00:25 +0000 热点研究 Spotlight Research,协同催化,硫键,硒基衍生物,α-重氮酯 //www.gsbet888.com/?p=51629 作者:石油醚 本期热点研究,我们邀请到了本文第一作者来自四川大学的博士生何鑫为我们分享。 2024年11月2日,Angew.Chem. Int. Ed.在线发表了来自四川大学刘小华团队题为「Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance」的研究论文。该文中,他们利用Rh(II)和手性胍的协同催化,通过卡宾反应过程与自发消旋过程竞争,实现了芳硒硫氰酸酯与α-重氮酯的不对称Se-S键卡宾插入反应。手性胍催化剂与底物PhSeSCN之间的硫键和氢键作用实现了对反应化学选择性和对映选择性的双重控制,所得的α-苯硒基-α-硫氰酸酯类化合物是靶向NLRP3炎性小体的抑制剂,能显著地抑制炎症因子IL-1b的释放,发挥抗炎作用。 “Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance Xin He, Yihua Fu, Ruiying Xi, Cefei Zhang, Kexin Lan, Zhishan Su, Fei Wang, Xiaoming Feng, Xiaohua Liu* Angew. Chem. Int. Ed. 2024, e202417636. DOI: 10.1002/anie.202417636” Q1. 请对“Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance”作一个简单介绍。 尽管有机硒/硫化合物在生命和材料科学中具有重要意义,但基于硫族原子的手性化合物的有效构建仍然是一个挑战。硫族原子可以形成称为硫键 (chalcogen-bonding,简称ChB )的净吸引相互作用,但它是一种尚未开发的辅助不对称催化的工具。在此,我们通过手性胍和非手性二铑配合物在三组分或四组分反应中的协同催化,实现了对映选择性的Se-S键卡宾插入反应,构建了同时含有硒基和硫氰基官能团的立体中心。光谱实验和DFT计算表明手性胍催化剂与底物PhSeSCN之间存在硫键和氢键作用。通过生物实验证明,所得的α-苯硒基-α-硫氰酸酯类化合物具有优异的抗炎活性和低的细胞毒性,在发展预防和/或治疗神经退行性疾病、机体代谢紊乱疾病及其并发症、炎症等疾病的药物中具有前景。该研究为硫族键催化模型的发展和含硫属杂原子生物活性小分子的设计提供了新思路。 Q2. 有关本次研究的时候遇到过怎样的困难呢?又是怎样克服的呢 本次研究存在两个困难,第一个困难在于底物的不稳定性,前期尝试了对底物PhSeSCN以及芳基氯化硒进行合成,但由于它们高的活性,这一策略失败,只能选择多步一锅法去完成这个反应;第二个困难在于实验数据波动,在进行了大量的控制实验和实验现象观察,发现底物硫氰酸钠的颗粒大小会影响第一步的反应时间,因此需要将其研磨成粉末,才能得到稳定的实验结果。 Q3. 本次研究主体,有没有什么让您感觉特别辛苦和烧脑呢? 最辛苦和烧脑的部分是机理的研究。对于机理研究,我们做了大量的光谱实验,进行数据分析,再结合DFT计算,才提出这样一个涉及硫键和氢键的独特机理。 Q4. 将来想继续研究化学的哪个方向呢? 受到这次产物高的生物活性的鼓舞,我将继续尝试对手性硒/硫化合物的合成,探索它们潜在的生物活性。 Q5. 最后,有什么想对各位读者说的吗? 非常荣幸受到邀请在此讲述自己做这个课题的相关经历,最想说的就是我们在做课题时一定要善于发现和观察,细节决定成败。比如我在“数据不稳定”这一个问题上就花了两三个月的时间去解决,那段时间试过了很多方法(严格控制水氧、试剂提纯等),都没有解决,心情也非常的糟糕。直到有一次发现同样的一批反应,第一步的颜色却各不相同,在这我就判断是不是NaSCN颗粒大小会影响第一步的反应速率,后面研磨之后也就成功解决了这个问题。从这个事情来看我在这方面就欠缺观察,忽视细节,所以也希望大家在实验过程中要多思考,多观察。 在此要特别感谢冯小明教授以及刘小华教授在整个课题研究中提供的悉心指导和教诲,感谢课题组提供了充实的科研条件。 作者教育背景简介 教育背景: 2021.09-至今 四川大学,有机化学,博士(刘小华教授) 2017.09-2021.06 陕西师范大学,化学,理学学士 本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载. 关注Chem-Station抖音号:79473891841 请登陆TCI试剂官网查看更多内容 https://www.tcichemicals.com/CN/zh/

作者:石油醚

本期热点研究,我们邀请到了本文第一作者来自四川大学的博士生何鑫为我们分享。

2024年11月2日,Angew.Chem. Int. Ed.在线发表了来自四川大学刘小华团队题为「Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance」的研究论文。该文中,他们利用Rh(II)和手性胍的协同催化,通过卡宾反应过程与自发消旋过程竞争,实现了芳硒硫氰酸酯与α-重氮酯的不对称Se-S键卡宾插入反应。手性胍催化剂与底物PhSeSCN之间的硫键和氢键作用实现了对反应化学选择性和对映选择性的双重控制,所得的α-苯硒基-α-硫氰酸酯类化合物是靶向NLRP3炎性小体的抑制剂,能显著地抑制炎症因子IL-1b的释放,发挥抗炎作用。

“Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance

Xin He, Yihua Fu, Ruiying Xi, Cefei Zhang, Kexin Lan, Zhishan Su, Fei Wang, Xiaoming Feng, Xiaohua Liu*

Angew. Chem. Int. Ed. 2024, e202417636. DOI: 10.1002/anie.202417636

Q1. 请对“Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance”作一个简单介绍。

尽管有机硒/硫化合物在生命和材料科学中具有重要意义,但基于硫族原子的手性化合物的有效构建仍然是一个挑战。硫族原子可以形成称为硫键 (chalcogen-bonding,简称ChB )的净吸引相互作用,但它是一种尚未开发的辅助不对称催化的工具。在此,我们通过手性胍和非手性二铑配合物在三组分或四组分反应中的协同催化,实现了对映选择性的Se-S键卡宾插入反应,构建了同时含有硒基和硫氰基官能团的立体中心。光谱实验和DFT计算表明手性胍催化剂与底物PhSeSCN之间存在硫键和氢键作用。通过生物实验证明,所得的α-苯硒基-α-硫氰酸酯类化合物具有优异的抗炎活性和低的细胞毒性,在发展预防和/或治疗神经退行性疾病、机体代谢紊乱疾病及其并发症、炎症等疾病的药物中具有前景。该研究为硫族键催化模型的发展和含硫属杂原子生物活性小分子的设计提供了新思路。

Q2. 有关本次研究的时候遇到过怎样的困难呢?又是怎样克服的呢

本次研究存在两个困难,第一个困难在于底物的不稳定性,前期尝试了对底物PhSeSCN以及芳基氯化硒进行合成,但由于它们高的活性,这一策略失败,只能选择多步一锅法去完成这个反应;第二个困难在于实验数据波动,在进行了大量的控制实验和实验现象观察,发现底物硫氰酸钠的颗粒大小会影响第一步的反应时间,因此需要将其研磨成粉末,才能得到稳定的实验结果。

Q3. 本次研究主体,有没有什么让您感觉特别辛苦和烧脑呢?

最辛苦和烧脑的部分是机理的研究。对于机理研究,我们做了大量的光谱实验,进行数据分析,再结合DFT计算,才提出这样一个涉及硫键和氢键的独特机理。

Q4. 将来想继续研究化学的哪个方向呢?

受到这次产物高的生物活性的鼓舞,我将继续尝试对手性硒/硫化合物的合成,探索它们潜在的生物活性。

Q5. 最后,有什么想对各位读者说的吗?

非常荣幸受到邀请在此讲述自己做这个课题的相关经历,最想说的就是我们在做课题时一定要善于发现和观察,细节决定成败。比如我在“数据不稳定”这一个问题上就花了两三个月的时间去解决,那段时间试过了很多方法(严格控制水氧、试剂提纯等),都没有解决,心情也非常的糟糕。直到有一次发现同样的一批反应,第一步的颜色却各不相同,在这我就判断是不是NaSCN颗粒大小会影响第一步的反应速率,后面研磨之后也就成功解决了这个问题。从这个事情来看我在这方面就欠缺观察,忽视细节,所以也希望大家在实验过程中要多思考,多观察。

在此要特别感谢冯小明教授以及刘小华教授在整个课题研究中提供的悉心指导和教诲,感谢课题组提供了充实的科研条件。

作者教育背景简介

教育背景:

2021.09-至今 四川大学,有机化学,博士(刘小华教授)

2017.09-2021.06 陕西师范大学,化学,理学学士

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载.

关注Chem-Station抖音号:79473891841

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/11/%e3%80%8cspotlight-research%e3%80%8d-%e7%a1%ab%e9%94%ae%e8%be%85%e5%8a%a9rhii-%e8%83%8d%e5%8d%8f%e5%90%8c%e5%82%ac%e5%8c%96%ce%b1-%e9%87%8d%e6%b0%ae%e9%85%af%e7%9a%84%e5%af%b9%e6%98%a0%e9%80%89.html/feed 0 51629
JACS:镍催化对映选择性C(sp3)−C(sp3) 交叉亲电偶联反应 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/10/jacs%ef%bc%9a%e9%95%8d%e5%82%ac%e5%8c%96%e5%af%b9%e6%98%a0%e9%80%89%e6%8b%a9%e6%80%a7csp3%e2%88%92csp3-%e4%ba%a4%e5%8f%89%e4%ba%b2%e7%94%b5%e5%81%b6%e8%81%94%e5%8f%8d%e5%ba%94.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/10/jacs%ef%bc%9a%e9%95%8d%e5%82%ac%e5%8c%96%e5%af%b9%e6%98%a0%e9%80%89%e6%8b%a9%e6%80%a7csp3%e2%88%92csp3-%e4%ba%a4%e5%8f%89%e4%ba%b2%e7%94%b5%e5%81%b6%e8%81%94%e5%8f%8d%e5%ba%94.html#respond CS editor Tue, 15 Oct 2024 23:32:43 +0000 研究论文介绍 镍催化,氮杂环丙烷,亲电偶联,苯乙胺 //www.gsbet888.com/?p=51501 作者:杉杉 导读: 近日,上海原思标物科技有限公司的刘文斌团队在J. Am. Chem. Soc.中发表论文,首次报道一种高度对映选择性烷基化氮杂环丙烷的开环反应。在手性镍/吡啶-咪唑啉配合物的催化下,实现了外消旋N-sulfonyl styrenyl aziridines与一级烷基溴的不对称C(sp3)−C(sp3) 交叉亲电偶联反应,合成了一系列手性苯乙胺衍生物,具有完全的区域控制性与良好的官能团耐受性。初步的机理研究支持了一种反应途径,该途径由原位氮杂环丙烷的区域选择性碘解与随后生成的β-氨基苄基碘与烷基溴的对映汇聚偶联组成。 Nickel-Catalyzed Enantioselective C(sp3)−C(sp3) Cross-Electrophile Coupling of N‑Sulfonyl Styrenyl Aziridines with Alkyl Bromides Y. Lan, Q. Han, P. Liao, R. Chen, F. Fan, X. Zhao, W. Liu*. J. Am. Chem. Soc. 2024, ASAP. doi: 10.1021/jacs.4c08435. 正文: 过渡金属催化的对映选择性交叉亲电偶联(XEC)是一种构建手性分子的有趣策略,避免了使用预生成的有机金属与潜在的官能团相容性的问题。尽管在镍催化的不对称C(sp3)−C(sp2) XEC反应中已取得了重大进展[1],但对于不对称C(sp3)−C(sp3) XEC反应仅有两例相关的报道,其由徐涛[2]和舒伟[3]团队开发,依赖于使用硼酸酯或酰胺作为导向基团。近年来,使用氮杂环丙烷的XEC反应经历了激增的发展,Doyle[4]、Nevado[5]与梅天胜[6]在镍催化下,使用化学计量的金属还原剂或电化学方法实现了高度对映选择性的研究(Scheme 1A)。2015年,Doyle课题组报道了一种镍催化的N-对甲苯磺酰基α-甲基苯乙烯基氮杂环丙烷与正丁基溴化锌的对映汇聚性交叉偶联反应,尽管对映体选择性较低(Scheme 1B) [7]。这里,上海原思标物科技有限公司的刘文斌团队首次报道一种镍催化外消旋N-sulfonyl styrenyl aziridines与一级烷基溴的对映汇聚性C(sp3)−C(sp3) 交叉亲电偶联反应,合成了一系列手性的苯乙胺衍生物(Scheme 1C)。 首先,作者采用N-sulfonyl styrenyl aziridine 1a与1-溴戊烷2a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。当使用L2–L4配体时,对映选择性较低。BiOX配体L5也促进了这种不对称开环反应,但对映选择性收率均偏低。BOX配体L6的反应生成了外消旋混合物。使用其他镍预催化剂如Ni(cod)2和NiBr2也得到了类似的结果。使用锌代替锰作为还原剂,导致收率与对映选择性均降低。使用MgCl2代替MgI2作为添加剂时,反应几乎停止。在NaI作为添加剂时,收率也显著降低。反应也在DMF中进行,结果稍差,而在THF中没有发生预期的反应。在室温下进行反应,会对不对称诱导产生不利影响。基于上述的讨论,进而确定最佳的反应条件为:采用Ni(dme)Cl2作为催化剂,L1作为手性配体,MgI2作为添加剂,Mn作为还原剂,在DMA反应溶剂中,反应温度为0 oC,最终获得90%收率的产物3aa(92% ee)。 在获得上述的最佳反应条件后,作者对底物的应用范围进行深入研究(Table 2)。首先,一系列一级烷基溴,均可顺利进行反应,获得相应的产物3aa–3as,收率为57-90%,ee为87-95%。值得注意的是,一系列活性的基团,如卤素、烷氧羰基、缩醛、羰基、醛基、硼酸酯等,均与体系兼容。同时,由可可碱与雌酮衍生的烷基溴,也能够顺利进行偶联反应,获得相应的产物3at(收率为88%,ee为94%)与3au(收率为81%,dr > 20:1)。然而,二级烷基溴或三级烷基溴,均未能有效的进行反应。其次,一系列不同取代的N-磺酰基氮杂环丙烷,均与体系兼容,获得相应的产物3ba–3ta与3ui,收率为59-92%,ee为86-95%。 接下来,作者对上述交叉亲电偶联过程的反应机理进行了研究 (Scheme 2)。首先,(R)-1a与(S)-1a分别在标准条件下反应,可获得相似收率与对映选择性的产物3aa(Scheme 2A)。通过对底物1a与产物3aa在反应过程中的对映选择性监控发现,产物3aa的对映选择性在反应过程中保持恒定,而回收的底物1a总是外消旋的,表明了反应涉及对映汇聚性的过程,外消旋氮杂环丙烷前体没有发生动力学拆分(Scheme 2B)。1a与1-碘戊烷(2a’)(Scheme 2C)以及1a与MgI2 (Scheme 2D)的对照实验表明,镍介导的氮杂环丙烷发生了缓慢的碘解,并且没有对映选择性的控制。苄基碘4与1-溴戊烷(2a)的偶联反应,同样可以25%的收率得到产物3aa,表明了反应涉及氮杂环丙烷碘解以及随后的偶联过程(Scheme 2E)。使用Ni(cod)2作为催化剂,1a与2a反应未能生成目标产物3aa,这与氮杂环丙烷直接氧化加成到低价镍的机理相反(Scheme 2F)。自由基钟实验结果表明,反应可能涉及烷基自由基介导烷基溴的氧化加成过程(Scheme 2G)。CV实验表明,Ni(I)配合物可以通过Mn还原由Ni(II)预催化剂原位产生 (Scheme 2H)。非线性效应研究结果表明,带有单一配体的单体镍配合物参与了对映体选择性控制步骤(Scheme 2I)。 随后,作者对反应的实用性进行了研究(Scheme 3)。首先,3aa通过钌促进苯环的氧化断裂以及酸介导的酯化反应,可以两步49%的收率与92%的ee得到β-氨基酸化合物5。其次,3ad通过脱保护,可以82%的收率得到手性一级胺6。同时,一级胺6可分别进行酰胺化与还原胺化,获得相应的苯甲酰胺化合物7(收率为89%,91% ee)与二级胺8(收率为75%,92% ee)。 基于上述的实验研究以及前期相关的文献报道[8],作者提出如下合理的反应机理 (Scheme 4)。首先,氮杂环丙烷1在原位进行区域选择性碘解,得到外消旋苄基碘4,在通过卤素原子转移(XAT)与Ni(I)Br的氧化加成反应中,其反应性优于烷基溴2。其次,苄基自由基A与Ni(II)IBr配合物进行重组(作为对映选择性决定步骤),生成手性Ni(III)中间体B。中间体B通过进一步的还原,生成Ni(I)配合物C。配合物C与烷基溴2通过XAT进行氧化加成反应,并经自由基重组,生成Ni(III) 配合物D。配合物D经还原消除,从而获得目标产物3,并再生Ni(I)Br作为下一个催化循环的催化剂。值得注意的是,根据Curtin−Hammett原理,涉及Ni(III)中间体D动态动力学拆分的机理方案也可能存在,其中配合物B的形成不是立体选择性的,但从外消旋Ni(III)中间体D到Ni(I)Br的最终还原消除是立体汇聚性的。 总结: 上海原思标物科技有限公司的刘文斌团队报道一种镍催化外消旋N-sulfonyl styrenyl aziridines与一级烷基溴的不对称C(sp3)−C(sp3) 交叉亲电偶联反应,合成了一系列手性的苯乙胺衍生物。同时,该策略具有底物范围广泛、官能团兼容性出色、区域选择性出色等特点。机理研究表明,反应涉及镍介导的N-磺酰基苯乙烯基氮杂环丙烷的区域选择性碘解,以及随后烷基溴与原位形成的β-氨基苄基碘之间的对映汇聚性C(sp3)−C(sp3)交叉亲电偶联的过程。 参考文献: [1] B. P. Woods, M. Orlandi, C. Y. Huang, M. S. Sigman, A. G. Doyle, J. […]

作者:杉杉

导读:

近日,上海原思标物科技有限公司的刘文斌团队在J. Am. Chem. Soc.中发表论文,首次报道一种高度对映选择性烷基化氮杂环丙烷的开环反应。在手性镍/吡啶-咪唑啉配合物的催化下,实现了外消旋N-sulfonyl styrenyl aziridines与一级烷基溴的不对称C(sp3)−C(sp3) 交叉亲电偶联反应,合成了一系列手性苯乙胺衍生物,具有完全的区域控制性与良好的官能团耐受性。初步的机理研究支持了一种反应途径,该途径由原位氮杂环丙烷的区域选择性碘解与随后生成的β-氨基苄基碘与烷基溴的对映汇聚偶联组成。

Nickel-Catalyzed Enantioselective C(sp3)−C(sp3) Cross-Electrophile Coupling of N‑Sulfonyl Styrenyl Aziridines with Alkyl Bromides

Y. Lan, Q. Han, P. Liao, R. Chen, F. Fan, X. Zhao, W. Liu*.

J. Am. Chem. Soc. 2024, ASAP. doi: 10.1021/jacs.4c08435.

正文:

过渡金属催化的对映选择性交叉亲电偶联(XEC)是一种构建手性分子的有趣策略,避免了使用预生成的有机金属与潜在的官能团相容性的问题。尽管在镍催化的不对称C(sp3)−C(sp2) XEC反应中已取得了重大进展[1],但对于不对称C(sp3)−C(sp3) XEC反应仅有两例相关的报道,其由徐涛[2]和舒伟[3]团队开发,依赖于使用硼酸酯或酰胺作为导向基团。近年来,使用氮杂环丙烷的XEC反应经历了激增的发展,Doyle[4]、Nevado[5]与梅天胜[6]在镍催化下,使用化学计量的金属还原剂或电化学方法实现了高度对映选择性的研究(Scheme 1A)。2015年,Doyle课题组报道了一种镍催化的N-对甲苯磺酰基α-甲基苯乙烯基氮杂环丙烷与正丁基溴化锌的对映汇聚性交叉偶联反应,尽管对映体选择性较低(Scheme 1B) [7]。这里,上海原思标物科技有限公司的刘文斌团队首次报道一种镍催化外消旋N-sulfonyl styrenyl aziridines与一级烷基溴的对映汇聚性C(sp3)−C(sp3) 交叉亲电偶联反应,合成了一系列手性的苯乙胺衍生物(Scheme 1C)。

首先,作者采用N-sulfonyl styrenyl aziridine 1a与1-溴戊烷2a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。当使用L2L4配体时,对映选择性较低。BiOX配体L5也促进了这种不对称开环反应,但对映选择性收率均偏低。BOX配体L6的反应生成了外消旋混合物。使用其他镍预催化剂如Ni(cod)2和NiBr2也得到了类似的结果。使用锌代替锰作为还原剂,导致收率与对映选择性均降低。使用MgCl2代替MgI2作为添加剂时,反应几乎停止。在NaI作为添加剂时,收率也显著降低。反应也在DMF中进行,结果稍差,而在THF中没有发生预期的反应。在室温下进行反应,会对不对称诱导产生不利影响。基于上述的讨论,进而确定最佳的反应条件为:采用Ni(dme)Cl2作为催化剂,L1作为手性配体,MgI2作为添加剂,Mn作为还原剂,在DMA反应溶剂中,反应温度为0 oC,最终获得90%收率的产物3aa(92% ee)。

在获得上述的最佳反应条件后,作者对底物的应用范围进行深入研究(Table 2)。首先,一系列一级烷基溴,均可顺利进行反应,获得相应的产物3aa3as,收率为57-90%,ee为87-95%。值得注意的是,一系列活性的基团,如卤素、烷氧羰基、缩醛、羰基、醛基、硼酸酯等,均与体系兼容。同时,由可可碱与雌酮衍生的烷基溴,也能够顺利进行偶联反应,获得相应的产物3at(收率为88%,ee为94%)与3au(收率为81%,dr > 20:1)。然而,二级烷基溴或三级烷基溴,均未能有效的进行反应。其次,一系列不同取代的N-磺酰基氮杂环丙烷,均与体系兼容,获得相应的产物3ba3ta3ui,收率为59-92%,ee为86-95%。

接下来,作者对上述交叉亲电偶联过程的反应机理进行了研究 (Scheme 2)。首先,(R)-1a与(S)-1a分别在标准条件下反应,可获得相似收率与对映选择性的产物3aa(Scheme 2A)。通过对底物1a与产物3aa在反应过程中的对映选择性监控发现,产物3aa的对映选择性在反应过程中保持恒定,而回收的底物1a总是外消旋的,表明了反应涉及对映汇聚性的过程,外消旋氮杂环丙烷前体没有发生动力学拆分(Scheme 2B)。1a与1-碘戊烷(2a’)(Scheme 2C)以及1a与MgI2 (Scheme 2D)的对照实验表明,镍介导的氮杂环丙烷发生了缓慢的碘解,并且没有对映选择性的控制。苄基碘4与1-溴戊烷(2a)的偶联反应,同样可以25%的收率得到产物3aa,表明了反应涉及氮杂环丙烷碘解以及随后的偶联过程(Scheme 2E)。使用Ni(cod)2作为催化剂,1a2a反应未能生成目标产物3aa,这与氮杂环丙烷直接氧化加成到低价镍的机理相反(Scheme 2F)。自由基钟实验结果表明,反应可能涉及烷基自由基介导烷基溴的氧化加成过程(Scheme 2G)。CV实验表明,Ni(I)配合物可以通过Mn还原由Ni(II)预催化剂原位产生 (Scheme 2H)。非线性效应研究结果表明,带有单一配体的单体镍配合物参与了对映体选择性控制步骤(Scheme 2I)。

随后,作者对反应的实用性进行了研究(Scheme 3)。首先,3aa通过钌促进苯环的氧化断裂以及酸介导的酯化反应,可以两步49%的收率与92%的ee得到β-氨基酸化合物5。其次,3ad通过脱保护,可以82%的收率得到手性一级胺6。同时,一级胺6可分别进行酰胺化与还原胺化,获得相应的苯甲酰胺化合物7(收率为89%,91% ee)与二级胺8(收率为75%,92% ee)。

基于上述的实验研究以及前期相关的文献报道[8],作者提出如下合理的反应机理 (Scheme 4)。首先,氮杂环丙烷1在原位进行区域选择性碘解,得到外消旋苄基碘4,在通过卤素原子转移(XAT)与Ni(I)Br的氧化加成反应中,其反应性优于烷基溴2。其次,苄基自由基A与Ni(II)IBr配合物进行重组(作为对映选择性决定步骤),生成手性Ni(III)中间体B。中间体B通过进一步的还原,生成Ni(I)配合物C。配合物C与烷基溴2通过XAT进行氧化加成反应,并经自由基重组,生成Ni(III) 配合物D。配合物D经还原消除,从而获得目标产物3,并再生Ni(I)Br作为下一个催化循环的催化剂。值得注意的是,根据Curtin−Hammett原理,涉及Ni(III)中间体D动态动力学拆分的机理方案也可能存在,其中配合物B的形成不是立体选择性的,但从外消旋Ni(III)中间体D到Ni(I)Br的最终还原消除是立体汇聚性的。

总结:

上海原思标物科技有限公司的刘文斌团队报道一种镍催化外消旋N-sulfonyl styrenyl aziridines与一级烷基溴的不对称C(sp3)−C(sp3) 交叉亲电偶联反应,合成了一系列手性的苯乙胺衍生物。同时,该策略具有底物范围广泛、官能团兼容性出色、区域选择性出色等特点。机理研究表明,反应涉及镍介导的N-磺酰基苯乙烯基氮杂环丙烷的区域选择性碘解,以及随后烷基溴与原位形成的β-氨基苄基碘之间的对映汇聚性C(sp3)−C(sp3)交叉亲电偶联的过程。

参考文献:

  • [1] B. P. Woods, M. Orlandi, C. Y. Huang, M. S. Sigman, A. G. Doyle, J. Am. Chem. Soc. 2017, 139, 5688. doi:10.1021/jacs.7b03448.
  • [2] J. Zhou, D. Wang, W. Xu, Z. Hu, T. Xu, J. Am. Chem. Soc. 2023, 145, 2081. doi:10.1021/jacs.2c13220.
  • [3] W. Zhao, W. Shu, Sci. Adv. 2023, 9, No. eadg9898. doi:10.1126/sciadv.adg9898.
  • [4] B. P. Woods, M. Orlandi, C. Y. Huang, M. S. Sigman, A. G. Doyle, J. Am. Chem. Soc. 2017, 139, 5688. doi:10.1021/jacs.7b03448.
  • [5] X. Hu, I. Cheng-Sanchez, S. Cuesta-Galisteo, C. Nevado, J. Am. Chem. Soc. 2023, 145, 6270. doi:10.1021/jacs.2c12869.
  • [6] Y. Wang, Z. Wang, I. L. Eshel, B. Sun, D. Liu, Y. Gu, A. Milo, T. Mei, Nat. Commun. 2023, 14,2322. doi:10.1038/s41467-023-37965-0.
  • [7] C. Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 5638. doi:10.1021/jacs.5b02503.
  • [8] S. Dongbang, A. G. Doyle, J. Am. Chem. Soc. 2022, 144, 20067. doi:10.1021/jacs.2c09294.

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载.

关注Chem-Station抖音号:79473891841

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/10/jacs%ef%bc%9a%e9%95%8d%e5%82%ac%e5%8c%96%e5%af%b9%e6%98%a0%e9%80%89%e6%8b%a9%e6%80%a7csp3%e2%88%92csp3-%e4%ba%a4%e5%8f%89%e4%ba%b2%e7%94%b5%e5%81%b6%e8%81%94%e5%8f%8d%e5%ba%94.html/feed 0 51501
Chem. Comm.:新型双吡唑亚胺光开关,或比单吡唑环更出色 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/10/chem-comm-%ef%bc%9a%e6%96%b0%e5%9e%8b%e5%8f%8c%e5%90%a1%e5%94%91%e4%ba%9a%e8%83%ba%e5%85%89%e5%bc%80%e5%85%b3%ef%bc%8c%e6%88%96%e6%af%94%e5%8d%95%e5%90%a1%e5%94%91%e7%8e%af%e6%9b%b4%e5%87%ba%e8%89%b2.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/10/chem-comm-%ef%bc%9a%e6%96%b0%e5%9e%8b%e5%8f%8c%e5%90%a1%e5%94%91%e4%ba%9a%e8%83%ba%e5%85%89%e5%bc%80%e5%85%b3%ef%bc%8c%e6%88%96%e6%af%94%e5%8d%95%e5%90%a1%e5%94%91%e7%8e%af%e6%9b%b4%e5%87%ba%e8%89%b2.html#respond CS editor Tue, 08 Oct 2024 23:09:24 +0000 研究论文介绍 //www.gsbet888.com/?p=51461 作者:邬佳蓉 导读 近日,德国维尔茨堡大学Greenfield课题组在前期对于芳基吡唑亚胺(AIP)光开关的研究(Chem. Sci., 2024,15, 3872-3878)基础上,发现双吡唑亚胺(IBP)在无取代的情况下可能表现出更好的光开关性能,此研究发表在Chem. Comm.期刊。 “Iminobispyrazole (IBP) photoswitches: two pyrazole rings can be better than one Jiarong Wu, Clara Li, Lasse Kreimendahl and Jake L. Greenfield* Chem. Commun., 2024, Advance Article. Doi: 10.1039/D4CC03517H” Sometimes, two pyrazoles are better than one: Exploring the photoswitching properties of synthetically accessible iminobispyrazoles. 亚胺通常作为可逆动态键而被人们熟知,在超分子自组装等领域被广泛使用。由于其同时具有与偶氮类似的双键结构,理论上在特定波长的光照条件下,亚胺也可能发生与偶氮类化合物类似的顺反异构反应,显著改变化合物空间结构及各种物化性质。偶氮类化合物作为光开关的研究已相对成熟,但亚胺却由于其通常极差的光开关性能而被忽视。Greenfield课题组在此前发表于Chemical Science发表的论文(Chem. Sci., 2024,15, 3872-3878)中探索了吡唑环以及芳环上的吡咯取代基对于亚胺光开关性能的显著提升,使得其在可见光条件下可以达到近乎完全的E → Z异构,并显著提升Z构型的热力学半衰期,达到室温下19小时。作者通过探索E和Z构型在胺交换(transimination)中的反应性能差别,利用亚胺的动态共价性质,实现了光驱动的非平衡稳态信息棘轮(J. Am. Chem. Soc. 2024, 146, 30, 20720–20727),进一步证明了亚胺在光开关领域的独特应用与研究价值。 在本工作中,作者使用另一个吡唑环替代了芳基吡唑亚胺(AIP)中的芳基,使得分子结构更为对称,同时通过研究基于IBP的多种区域异构体所组成的 [3×3] 分子库,发现与同样未功能化的AIP类似物相比,一些IBP表现出显著提升的热力学半衰期,最长可达120倍,在没有任何取代基的情况下达到室温下26.3分钟。同时,由于不同区域异构体的共轭范围稍有差别(3-或4-吡唑更倾向于部分共轭,而5-吡唑倾向于完全共轭),更大的共轭体系导致他们的π-π*跃迁吸收峰也有一定程度的红移,使得其能够被能量更低、波长更长的光诱发实现光异构,这也为设计其他新型亚胺光开关提供了思路与方向 与AIP普遍所展现出“负光致变色”(Negative Photochromism)效应不同,IBP分子展示出“正光致变色”(Positive Photochromism)效应,在E构型转变为Z构型后,分子的最大吸收波长向长波长方向移动,这是由于Z构型的n→π*跃迁导致的,同时也体现出IBP分子作为亚胺光开关的独特性。 综上,作者制备了九种双吡唑亚胺(IBP)的 [3×3] 分子库并表征了它们的光开关特性。对于AIP而言,只有在邻位官能化后才能实现相对较长的热力学半衰期,但他们发现 IBP,特别是 4,4 和 3,4 表现出了较强的Z 构型稳定性。他们目前正在努力通过利用亚胺键的动态共价特性,在系统化学背景下探索更加多样化的光开关分子库。 (非常感谢维尔茨堡大学的博士生邬佳蓉对Chem-Station的支持) 请登陆TCI试剂官网查看更多内容 https://www.tcichemicals.com/CN/zh/

作者:邬佳蓉

导读

近日,德国维尔茨堡大学Greenfield课题组在前期对于芳基吡唑亚胺(AIP)光开关的研究(Chem. Sci., 2024,15, 3872-3878)基础上,发现双吡唑亚胺(IBP)在无取代的情况下可能表现出更好的光开关性能,此研究发表在Chem. Comm.期刊。

“Iminobispyrazole (IBP) photoswitches: two pyrazole rings can be better than one

Jiarong Wu, Clara Li, Lasse Kreimendahl and Jake L. Greenfield*

Chem. Commun., 2024, Advance Article. Doi: 10.1039/D4CC03517H

Sometimes, two pyrazoles are better than one: Exploring the photoswitching properties of synthetically accessible iminobispyrazoles.

亚胺通常作为可逆动态键而被人们熟知,在超分子自组装等领域被广泛使用。由于其同时具有与偶氮类似的双键结构,理论上在特定波长的光照条件下,亚胺也可能发生与偶氮类化合物类似的顺反异构反应,显著改变化合物空间结构及各种物化性质。偶氮类化合物作为光开关的研究已相对成熟,但亚胺却由于其通常极差的光开关性能而被忽视。Greenfield课题组在此前发表于Chemical Science发表的论文(Chem. Sci., 2024,15, 3872-3878)中探索了吡唑环以及芳环上的吡咯取代基对于亚胺光开关性能的显著提升,使得其在可见光条件下可以达到近乎完全的E Z异构,并显著提升Z构型的热力学半衰期,达到室温下19小时。作者通过探索EZ构型在胺交换(transimination)中的反应性能差别,利用亚胺的动态共价性质,实现了光驱动的非平衡稳态信息棘轮(J. Am. Chem. Soc. 2024, 146, 30, 20720–20727),进一步证明了亚胺在光开关领域的独特应用与研究价值。

在本工作中,作者使用另一个吡唑环替代了芳基吡唑亚胺(AIP)中的芳基,使得分子结构更为对称,同时通过研究基于IBP的多种区域异构体所组成的 [3×3] 分子库,发现与同样未功能化的AIP类似物相比,一些IBP表现出显著提升的热力学半衰期,最长可达120倍,在没有任何取代基的情况下达到室温下26.3分钟。同时,由于不同区域异构体的共轭范围稍有差别(3-或4-吡唑更倾向于部分共轭,而5-吡唑倾向于完全共轭),更大的共轭体系导致他们的π-π*跃迁吸收峰也有一定程度的红移,使得其能够被能量更低、波长更长的光诱发实现光异构,这也为设计其他新型亚胺光开关提供了思路与方向

与AIP普遍所展现出“负光致变色”(Negative Photochromism)效应不同,IBP分子展示出“正光致变色”(Positive Photochromism)效应,在E构型转变为Z构型后,分子的最大吸收波长向长波长方向移动,这是由于Z构型的n→π*跃迁导致的,同时也体现出IBP分子作为亚胺光开关的独特性。

综上,作者制备了九种双吡唑亚胺(IBP)的 [3×3] 分子库并表征了它们的光开关特性。对于AIP而言,只有在邻位官能化后才能实现相对较长的热力学半衰期,但他们发现 IBP,特别是 4,4 和 3,4 表现出了较强的Z 构型稳定性。他们目前正在努力通过利用亚胺键的动态共价特性,在系统化学背景下探索更加多样化的光开关分子库。

(非常感谢维尔茨堡大学的博士生邬佳蓉对Chem-Station的支持

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/10/chem-comm-%ef%bc%9a%e6%96%b0%e5%9e%8b%e5%8f%8c%e5%90%a1%e5%94%91%e4%ba%9a%e8%83%ba%e5%85%89%e5%bc%80%e5%85%b3%ef%bc%8c%e6%88%96%e6%af%94%e5%8d%95%e5%90%a1%e5%94%91%e7%8e%af%e6%9b%b4%e5%87%ba%e8%89%b2.html/feed 0 51461
「Spotlight Research」酶启发实现SN2反应的新突破 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/10/%e3%80%8cspotlight-research%e3%80%8d%e9%85%b6%e5%90%af%e5%8f%91%e5%ae%9e%e7%8e%b0sn2%e5%8f%8d%e5%ba%94%e7%9a%84%e6%96%b0%e7%aa%81%e7%a0%b4.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/10/%e3%80%8cspotlight-research%e3%80%8d%e9%85%b6%e5%90%af%e5%8f%91%e5%ae%9e%e7%8e%b0sn2%e5%8f%8d%e5%ba%94%e7%9a%84%e6%96%b0%e7%aa%81%e7%a0%b4.html#respond CS editor Tue, 08 Oct 2024 00:37:44 +0000 热点研究 SN2反应 新突破 酶启发 //www.gsbet888.com/?p=51446 作者:石油醚 本期热点研究,我们邀请到了本文第一作者来自普渡大学的助理教授Gabriel Lovinger 为我们分享。 2024年7月18日,Nature在线发表了来自美国哈佛大学教授 Eric N. Jacobsen教授团队题为「Catalysis of an SN2 pathway by geometric preorganization」的研究论文。受酶催化的启发,Eric N. Jacobsen教授利用精确设计的手性小分子(646 Da)氢键供体(HBD)催化剂,通过重现酶采用的几何预组织原理加速了对映选择性Michaelis-Arbuzov反应的SN2脱烷基化步骤,从而高对映选择性地构建了一系列可进行多种衍生化的H-亚膦酸酯。 “Catalysis of an SN2 pathway by geometric preorganization Gabriel J. Lovinger, Marcus H. Sak, Eric N. Jacobsen Nature, 2024, 632, 1052–1059, DOI: 10.1038/s41586-024-07811-4” Q1. 请对“Catalysis of an SN2 pathway by geometric preorganization”作一个简单介绍。 双分子亲核取代 (SN2) 是生物过程调节人类健康和实现合成转化(现代医药和材料)的基本机制步骤。尽管如此,催化控制 SN2 途径的策略仍然相对较少。特别是,离子型 SN2是一系列重要的反应的基础,如亲核氟化、甲基转移酶甲基化和磷鎓脱烷基化,后者实现了 Michaelis-Arbuzov 和许多其他人名反应。由于催化剂和反应离子之间的任何静电相互作用必然会稳定电荷使得降低极性反应性,进而导致离子型SN2的催化控制极具挑战。因此,传统的“强相互作用-强催化”范式效果不佳,导致抑制而不是催化。这项工作的关键智慧见解或许是认识到离子型 SN2 的能量成本在概念上可以分解为两个部分,即1)与几何重组相关的离子对重组;2)与键形成和键断裂相关的离子对的崩塌。我们通过认识到分子重组对离子 SN2 构成了巨大的能量成本,可以通过轻轻触碰将离子预组织为过渡态构型来催化“不可催化”反应。酶催化中常用此策略,但在当今的合成化学和催化中并不普遍使用,甚至没有得到很好的理解,因此本研究为新催化剂设计提供了可能的蓝图。 Bimolecular nucleophilic substitution (SN2) is a fundamental mechanistic step underpinning biological processes regulating human health and enabling synthetic transformations that produce the pharmaceuticals and materials of modern society. Despite this, there remain relatively few strategies to catalytically control SN2 pathways. In particular, ionic SN2 underpins entire classes of important […]

作者:石油醚

本期热点研究,我们邀请到了本文第一作者来自普渡大学的助理教授Gabriel Lovinger 为我们分享。

2024年7月18日,Nature在线发表了来自美国哈佛大学教授 Eric N. Jacobsen教授团队题为「Catalysis of an SN2 pathway by geometric preorganization」的研究论文。受酶催化的启发,Eric N. Jacobsen教授利用精确设计的手性小分子(646 Da)氢键供体(HBD)催化剂,通过重现酶采用的几何预组织原理加速了对映选择性Michaelis-Arbuzov反应的SN2脱烷基化步骤,从而高对映选择性地构建了一系列可进行多种衍生化的H-亚膦酸酯。

“Catalysis of an SN2 pathway by geometric preorganization

Gabriel J. Lovinger, Marcus H. Sak, Eric N. Jacobsen

Nature, 2024, 632, 1052–1059, DOI: 10.1038/s41586-024-07811-4”

Q1. 请对“Catalysis of an SN2 pathway by geometric preorganization一个简单介绍。

双分子亲核取代 (SN2) 是生物过程调节人类健康和实现合成转化(现代医药和材料)的基本机制步骤。尽管如此,催化控制 SN2 途径的策略仍然相对较少。特别是,离子型 SN2是一系列重要的反应的基础,如亲核氟化、甲基转移酶甲基化和磷鎓脱烷基化,后者实现了 Michaelis-Arbuzov 和许多其他人名反应。由于催化剂和反应离子之间的任何静电相互作用必然会稳定电荷使得降低极性反应性,进而导致离子型SN2的催化控制极具挑战。因此,传统的“强相互作用-强催化”范式效果不佳,导致抑制而不是催化。这项工作的关键智慧见解或许是认识到离子型 SN2 的能量成本在概念上可以分解为两个部分,即1)与几何重组相关的离子对重组;2)与键形成和键断裂相关的离子对的崩塌。我们通过认识到分子重组对离子 SN2 构成了巨大的能量成本,可以通过轻轻触碰将离子预组织为过渡态构型来催化“不可催化”反应。酶催化中常用此策略,但在当今的合成化学和催化中并不普遍使用,甚至没有得到很好的理解,因此本研究为新催化剂设计提供了可能的蓝图。

Bimolecular nucleophilic substitution (SN2) is a fundamental mechanistic step underpinning biological processes regulating human health and enabling synthetic transformations that produce the pharmaceuticals and materials of modern society. Despite this, there remain relatively few strategies to catalytically control SN2 pathways. In particular, ionic SN2 underpins entire classes of important reactions such as nucleophilic fluorination, methylation by methyltransferase enzymes, and phosphonium dealkylation which enables the Michaelis-Arbuzov and many other named reactions. Catalyzing ionic SN2 is fundamentally challenging because any electrostatic interaction between a catalyst and reacting ion(s) necessarily stabilizes charge and thus reduces polar reactivity. Thus, the traditional “strong interactions-strong catalysis” paradigm doesn’t work well and leads to inhibition rather than catalysis. The key intellectual insight of this work is perhaps recognizing that the energy cost for ionic SN2 can be conceptually decomposed into two components, ion pair reorganization associated with geometric reorganization, and ion pair collapse associated with bond making and bond breaking. By recognizing that molecular reorganization constitutes a large energy cost for ionic SN2 it is possible to catalyze “uncatalyzable” reactions by using a light touch to pre-organize ions into transition-state-like configurations. This strategy is used by enzymes but is not generally employed or even well understood in synthetic chemistry and catalysis today so the present work provides a possible blueprint for new catalyst designes.

Q2. 有关本次研究的时候遇到过怎样的困难呢?又是怎样克服的呢

从实际角度来看,缺乏市售的膦结构单元是一个真正的障碍;我们不得不投入大量精力来开发可靠地制备和纯化膦 (III) 起始原料的方案,以便我们能够测试假设。与可用于开发 C-C 键形成反应(如交叉偶联)的基础研究相比,目前可开发用于获取 P-手性化合物的催化方法尚未完善。 从根本上讲,从开发一格的模型出发,来解释我们如何通过精确定位两种抑制剂来构建催化剂是一项巨大挑战。我们在实践中发现,这让一些人觉得违反直觉。我认为,结构重组可能是反应总能量成本的主要组成部分,而这一事实相对于键断裂或形成事件而言通常被严重低估。值得高兴的是,我们有一个小型清洁合成系统,可以重现酶催化所依赖的催化原理。我感兴趣的是,看看人们是否会受到启发,进一步将这个想法作为催化机制来发展,以及它是否会为新的催化剂设计和针对目前难以选择性催化的反应的努力提供一些极具价值的信息。

From a practical perspective, the sheer lack of commercially available phosphorus building blocks presented a real hurdle; we had to invest a lot of effort to develop protocols to reliably prepare and purify phosphorus (III) starting materials so we could test out hypothesis. Compared to the infrastructure available to develop C-C bond forming reactions such as cross-couplings, developing catalytic methods to access P-chiral compounds is not well established.

From a fundamental perspective, it was challenging to develop a model to explain how we can, in essence, construct a catalyst from two inhibitors by precisely positioning them. We found in practice that it struck some people as counterintuitive. I think the fact that structural reorganization can be a major component of the overall energetic cost for reactions is underappreciated in general relative to bond breaking or making events. I’m excited by the idea that we have a small clean synthetic system that recapitulates a catalytic principle that underpins enzyme catalysis. I will be interested to see if people are inspired to pursue this idea further as a mechanism of catalysis and if it informs new catalyst designs and efforts to target reactions that are currently challenging to selectively catalyze.

Q3. 本次研究主体,有没有什么让您感觉特别辛苦和烧脑呢?

本研究的构思和实现非常令人兴奋,其将有机合成、物理有机和机理方面的的许多有趣的元素汇集在一起。从合成的角度来看,深入研究手性磷的文献,了解如何通过选择性催化古老的 Michaelis-Arbuzov 反应进行创新是令人兴奋的。磷鎓脱烷基化是许多反应中必不可少的步骤之一,但 125 多年来一直没有催化对映选择性的解决方案,这一事实令我感到惊讶。从物理有机的角度来看,我对分子结构和能量之间的关系很着迷,本课题真正深入研究了催化剂与底物之间的相互作用来如何影响反应速率。从机理的角度来看,这个项目提供了开发清洁合成系统的机会,从中可以通过底物预组织获得有关酶催化反应模式的机理见解。

This project was very exciting to conceive of and realize as it brings together a lot of interesting elements from synthetic, physical organic, and mechanistic perspectives. From a synthetic perspective it was exciting to delve into the chiral-at-phosphorus literature to learn how we could innovate in that space by selectively catalyzing the venerable Michaelis-Arbuzov reaction. The fact that phosphonium dealkylation is an essential step in many reactions yet has remained without a catalytic enantioselective solution for more than 125 years, was surprising to me. From a physical organic perspective, I’m fascinated by the relationship between molecular structure and energy and this project really delved into how the interplay of catalyst and substrate structure effects the rate of reactions. From a mechanistic perspective this project presented the opportunity to develop a clean synthetic system from which mechanistic insight could be gleaned about modes of enzyme catalysis via substrate pre-organization.

Q4. 将来想继续研究化学的哪个方向呢?

作为普渡大学的新任助理教授,我的团队专注于将合成物理有机化学 (SPOC) 的方法用于基础反应发现、选择性催化剂设计和机理研究等多方面。该方法是从机理假设开始,以“我们可以关注最有价值的反应或概念是什么”等问题为指导,通过有机合成化学进行发展,并并试图通过机理分析和物理有机研究创造普遍的见解。我们的指导理念之一是设计催化剂,以转移反应中间体的内在机制,从而连接原本不相关的起始材料和产品。

As a new assistant professor at Purdue my group is focused on applying a synthetic physical organic chemistry (SPOC) approach to fundamental reaction discovery, selective catalyst design, and mechanistic studies. This approach starts with a mechanistic hypothesis, is guided by questions such as “what is the most valuable reaction or concept we could focus on”, develops through synthetic organic synthesis, and seeks to create general insights through mechanistic analysis and physical organic studies. One of our guiding philosophies is to design catalysts that divert the intrinsic mechanisms of reactive intermediates to connect otherwise unconnected starting materials and products.

Q5. 最后,有什么想对各位读者说的吗?

想象一下那些不应该发生的事,了解其中缘由,然后去实验室验证。大自然是现实的诚实评判者,颠覆直觉是一件非常有趣的事。

Imagine things that shouldn’t work, understand why, then go to the lab. Nature is an honest judge of reality and overturned intuition is interesting.

作者教育背景简介

工作及工作背景:

2008—2013 University of Oregon/Robert D. Clark Honors College, B.A. in Chemistry  Advisor: Professor Shih-Yuan Liu

2010—2011 Universidad de País Vasco, San Sebastián, Spain, Student Researcher

Advisor: Professor Shih-Yuan Liu

2013—2014 Boston College, Research Associate

Advisor: Professor Shih-Yuan Liu

2014—2019 Boston College, Ph.D. in Organic Chemistry

Advisor: Professor James P. Morken

2020—2024 Harvard, NIH (F32) Postdoctoral Researcher

Advisor: Professor Eric N. Jacobsen

2024—Present Purdue University, Asst. Professor

所获得荣誉及奖励:

MIT Future Faculty Symposium, 2022

Reaxys PhD Prize Finalist, 2020

Ereztech Young Organometallic Scientists Award, 2019

Ruth L. Kirschstein National Research Service Award (NIH F32), 2019

Alfred R. Bader Award for Student Innovation in Synthetic Organic Chemistry; Finalist, presented in Darmstadt, Germany; 2018

LaMattina Family Graduate Fellowship in Chemical Synthesis, Boston College, 2017-2018

The Donald J. White Teaching Excellence Award, Boston College, 2016

本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载.

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/10/%e3%80%8cspotlight-research%e3%80%8d%e9%85%b6%e5%90%af%e5%8f%91%e5%ae%9e%e7%8e%b0sn2%e5%8f%8d%e5%ba%94%e7%9a%84%e6%96%b0%e7%aa%81%e7%a0%b4.html/feed 0 51446
Angew:利用硼叶立德实现立体选择性构建偕二硼基环丙烷 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/angew%ef%bc%9a%e5%88%a9%e7%94%a8%e7%a1%bc%e5%8f%b6%e7%ab%8b%e5%be%b7%e5%ae%9e%e7%8e%b0%e7%ab%8b%e4%bd%93%e9%80%89%e6%8b%a9%e6%80%a7%e6%9e%84%e5%bb%ba%e5%81%95%e4%ba%8c%e7%a1%bc%e5%9f%ba%e7%8e%af.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/angew%ef%bc%9a%e5%88%a9%e7%94%a8%e7%a1%bc%e5%8f%b6%e7%ab%8b%e5%be%b7%e5%ae%9e%e7%8e%b0%e7%ab%8b%e4%bd%93%e9%80%89%e6%8b%a9%e6%80%a7%e6%9e%84%e5%bb%ba%e5%81%95%e4%ba%8c%e7%a1%bc%e5%9f%ba%e7%8e%af.html#respond CS editor Mon, 23 Sep 2024 01:01:36 +0000 研究论文介绍 叶立德 烷基偕二硼 环丙烷 //www.gsbet888.com/?p=51339 作者:石油醚 导读: 近日,中国科学院兰州化物所刘超(现任职于南京大学)/张鹏团队首次报道了烯烃与硼叶立德的立体选择性环丙烷化反应,为合成立体专一偕二硼官能化的环丙烷提供了一种模块化策略。在手性助剂的帮助下,合成的手性偕二硼基环丙烷具有极佳的对映选择性。基于硼基团强大的可转化能力,具有挑战性的含多季碳中心的环丙烷单元得以轻松构建,并具有极佳的立体选择性。对照实验表明,硼基团对于反应的化学选择性和立体选择性的控制都是必要的。这一研究成果近期发表在Angew. Chem. Int. Ed.杂志上,在读博士生方通昌为文章第一作者,刘超教授和张鹏研究员为文章通讯作者。该工作受到国家自然科学基金(22022113)的支持。 “Boron Ylide Enables Stereoselective Construction of gem-Diborylcyclopropanes Tongchang Fang, Peng Zhang*, Chao Liu* Angew. Chem. Int. Ed. 2024, e202415301 Doi: 10.1002/anie.202415301” 正文: 图1:反应背景与设计 三元环,尤其是环丙烷,因其独特的物理化学性质而成为药物化学的基本框架。自20世纪60年代以来,环丙烷被战略性地纳入药理活性化合物的分子结构中,以实现特定的治疗目标。在药物设计中,环丙烷通常作为烷基、芳基和乙烯基的生物异构,从而有助于提高药效、减少脱靶效应、改善代谢稳定性和提高水溶性(图1a)。此外,环丙烷因其固有的环状应变性,经常被用作合成非常规分子的关键构件。环丙烷的价值毋庸置疑,但人们仍在孜孜不倦地寻求有效构建环丙烷或将其直接整合到复杂分子中的通用策略。这凸显了当前合成方法中的一个关键缺口,强调了创新合成策略的必要性,以充分发挥这些多用途环系统在合成和药物化学中的潜力。 目前构建环丙烷的主要方法通常是[2+1]环化策略,其中主要是利用卡宾作为C1碳源的环化方法。与此同时,使用叶立德作为[2+1]环化反应的两亲性C1碳源显示出了独特的合成优势。叶立德结构中的杂原子官能团既是离去基团,又是邻位碳负离子的稳定因子。在环丙烷化过程中,这些宝贵的杂原子基团会被消除(图1b,左)。该课题组设想将这两种功能(离去基团和碳负离子稳定因子)分离开来,将可能实现有价值的杂原子官能团在最终分子中的有效保留。 中国科学院兰州化物所刘超(现任职于南京大学)团队长期致力于有机硼化学研究,近年来,该团队发展了一系列新型卤代偕二硼试剂(Chin. J. Org. Chem. 2023, 43, 777-780, Angew. Chem. Int. Ed. 2024, 63, e202315227),并基于此发展了非常规偕二硼试剂的模块化合成方法(图2)。 图2:硼-Matteson反应合成卤代偕二硼试剂 硼基团的空p轨道赋予了其稳定α-碳负离子的能力,显然,α-卤代烷基硼化合物满足了分离离去基团和碳负离子稳定因子功能的设计要求(图1b,右),但通过去质子化从α-卤代单硼酸酯生成硼叶立德具有挑战性(图1c)。最近,刘超课题组和其他研究小组证明了α-卤代偕二硼酸酯生成硼叶立德的可能性。这鼓励其进一步研究硼叶立德与烯烃的环丙烷化反应(图1d)。 在此,作者进一步开发了通过三溴甲基锂的1,2-硼迁移反应合成二硼二溴甲烷(DBDBM)的方法(图3a)。以甲基丙烯酸甲酯1a被用作环丙烷化反应的模型烯烃,基于已合成的硼叶立德前体,分别通过去质子化和锂卤交换策略对其反应性进行了筛选,结果表明DBDBM的锂卤交换是生成硼叶立德的最有效的方法(图3b)。 图3:硼叶立德前体的合成与筛选 随后探讨了不同烯烃在这种环丙烷化反应中的适用性(图4)。带有酯(2b-2i)、酰胺(2j)、氰基(2k)、磺酰基(2l)和膦酰基(2m)官能团的烯烃都能很好地与该反应相容。通过10B 标记的DBDBM将10B分子轻松引入到这些环丙烷分子中,凸显了该策略的实用性。在标准条件下,α-CF3取代的苯乙烯也能以50%的产率生成2n,同时还有45%的烯烃未转化。相比之下,α-CH3取代的苯乙烯1o没有产生任何环化产物,这表明了烯烃缺电子的重要性。此外,常见的脂肪族烯烃1p也不适用于环化反应。 图4:烯烃兼容性探索 接下来作者进一步探索使用手性辅基以实现偕二硼基环丙烷的立体选择性合成(图5)。经过一系列筛选,Evans手性辅基有着很好的诱导效果,并通过手性辅基的立体专一转化,实现了环丙基甲酸酯和环丙基甲酰胺的高立体选择性合成,并且在反应后实现了手性辅基的回收。 图5:立体选择性环丙化 为进一步证明其应用价值,作者以偕二硼基环丙烷作为合成砌块,进行了多种转化,其均保持了很好的立体选择性,并利用该课题组开发的胺化试剂,实现了药物分子-米那普伦7的立体选择性合成(图6)。 图6:合成应用 随后作者进行了一系列对照实验,以探究硼基团在环化反应中的重要性(图7)。将Bpin 基团改为甲基基团以生成碳负离子,并没有检测到的环化产物(图7a,式2),突出了Bpin 基团稳定作用的重要性。此外,异丙基硫叶立德和1w的Corey-Chaykovsky反应产生了相应的环丙烷产物,收率很高,但立体选择性却很低(1.8:1 d.r.)(图7a,式3),这突出表明硼基团在控制环丙烷化反应的立体选择性方面起着至关重要的作用。此外,还对具有相反构型的丙烯酸酯衍生物进行了环丙烷化反应(图7a,式4)。(E)-2-甲基丁-2-烯酸甲酯1ad可以生成环丙烷化产物2ad,收率为35%,d.r.为 4.6:1,而使用相反构型的烯烃(Z)-1ae则没有环丙烷化产物。这些结果表明,羰基氧原子与硼原子的预配位可能发生在硼基团对烯烃单元的亲核攻击之前(图7b)。首先,羰基氧与硼配位生成Int-A,随后“分子内”亲核进攻烯烃,生成六元烯醇中间体Int-B,随后的分子内环化反应生成了偕二硼基环丙烷。 图7:反应机理探索 接下来,作者尝试捕获硼叶立德(图8)。加入甲醇后,形成了甲氧基取代的偕二硼甲烷17,证明了甲醇质子化硼叶立德的过程中生成了溴代偕二硼甲烷和甲醇锂。同样,含NH的烯烃18也没有生成所需的环化产物,硼叶立德对NH进行去质子化后,发生了1,2-N迁移,生成了氮取代的偕二硼甲烷19。与酮20发生硼-Witting反应生成四取代溴硼烯烃21也证明了硼叶立德的生成。 图8:硼叶立德的捕获 综上,以DBDBM为硼叶立德前体与烯烃的环丙化反应提供了一种获得各种偕二硼基环丙烷的模块化策略,为合成复杂的环丙烷奠定了基础。实验结果表明,硼基团对于反应的进行和立体选择性的控制至关重要。 (非常感谢刘超教授对Chem-Station的支持) 请登陆TCI试剂官网查看更多内容 https://www.tcichemicals.com/CN/zh/

作者:石油醚

导读:

近日,中国科学院兰州化物所刘超(现任职于南京大学)/张鹏团队首次报道了烯烃与硼叶立德的立体选择性环丙烷化反应,为合成立体专一偕二硼官能化的环丙烷提供了一种模块化策略。在手性助剂的帮助下,合成的手性偕二硼基环丙烷具有极佳的对映选择性。基于硼基团强大的可转化能力,具有挑战性的含多季碳中心的环丙烷单元得以轻松构建,并具有极佳的立体选择性。对照实验表明,硼基团对于反应的化学选择性和立体选择性的控制都是必要的。这一研究成果近期发表在Angew. Chem. Int. Ed.杂志上,在读博士生方通昌为文章第一作者,刘超教授和张鹏研究员为文章通讯作者。该工作受到国家自然科学基金(22022113)的支持。

“Boron Ylide Enables Stereoselective Construction of gem-Diborylcyclopropanes

Tongchang Fang, Peng Zhang*, Chao Liu*

Angew. Chem. Int. Ed. 2024, e202415301 Doi: 10.1002/anie.202415301”

正文:

图1:反应背景与设计

三元环,尤其是环丙烷,因其独特的物理化学性质而成为药物化学的基本框架。自20世纪60年代以来,环丙烷被战略性地纳入药理活性化合物的分子结构中,以实现特定的治疗目标。在药物设计中,环丙烷通常作为烷基、芳基和乙烯基的生物异构,从而有助于提高药效、减少脱靶效应、改善代谢稳定性和提高水溶性(图1a)。此外,环丙烷因其固有的环状应变性,经常被用作合成非常规分子的关键构件。环丙烷的价值毋庸置疑,但人们仍在孜孜不倦地寻求有效构建环丙烷或将其直接整合到复杂分子中的通用策略。这凸显了当前合成方法中的一个关键缺口,强调了创新合成策略的必要性,以充分发挥这些多用途环系统在合成和药物化学中的潜力。

目前构建环丙烷的主要方法通常是[2+1]环化策略,其中主要是利用卡宾作为C1碳源的环化方法。与此同时,使用叶立德作为[2+1]环化反应的两亲性C1碳源显示出了独特的合成优势。叶立德结构中的杂原子官能团既是离去基团,又是邻位碳负离子的稳定因子。在环丙烷化过程中,这些宝贵的杂原子基团会被消除(图1b,左)。该课题组设想将这两种功能(离去基团和碳负离子稳定因子)分离开来,将可能实现有价值的杂原子官能团在最终分子中的有效保留。

中国科学院兰州化物所刘超(现任职于南京大学)团队长期致力于有机硼化学研究,近年来,该团队发展了一系列新型卤代偕二硼试剂(Chin. J. Org. Chem. 2023, 43, 777-780, Angew. Chem. Int. Ed. 2024, 63, e202315227),并基于此发展了非常规偕二硼试剂的模块化合成方法(图2)。

图2:硼-Matteson反应合成卤代偕二硼试剂

硼基团的空p轨道赋予了其稳定α-碳负离子的能力,显然,α-卤代烷基硼化合物满足了分离离去基团和碳负离子稳定因子功能的设计要求(图1b,右),但通过去质子化从α-卤代单硼酸酯生成硼叶立德具有挑战性(图1c)。最近,刘超课题组和其他研究小组证明了α-卤代偕二硼酸酯生成硼叶立德的可能性。这鼓励其进一步研究硼叶立德与烯烃的环丙烷化反应(图1d)。

在此,作者进一步开发了通过三溴甲基锂的1,2-硼迁移反应合成二硼二溴甲烷(DBDBM)的方法(图3a)。以甲基丙烯酸甲酯1a被用作环丙烷化反应的模型烯烃,基于已合成的硼叶立德前体,分别通过去质子化和锂卤交换策略对其反应性进行了筛选,结果表明DBDBM的锂卤交换是生成硼叶立德的最有效的方法(图3b)。

图3:硼叶立德前体的合成与筛选

随后探讨了不同烯烃在这种环丙烷化反应中的适用性(图4)。带有酯(2b-2i)、酰胺(2j)、氰基(2k)、磺酰基(2l)和膦酰基(2m)官能团的烯烃都能很好地与该反应相容。通过10B 标记的DBDBM将10B分子轻松引入到这些环丙烷分子中,凸显了该策略的实用性。在标准条件下,α-CF3取代的苯乙烯也能以50%的产率生成2n,同时还有45%的烯烃未转化。相比之下,α-CH3取代的苯乙烯1o没有产生任何环化产物,这表明了烯烃缺电子的重要性。此外,常见的脂肪族烯烃1p也不适用于环化反应。

图4:烯烃兼容性探索

接下来作者进一步探索使用手性辅基以实现偕二硼基环丙烷的立体选择性合成(图5)。经过一系列筛选,Evans手性辅基有着很好的诱导效果,并通过手性辅基的立体专一转化,实现了环丙基甲酸酯和环丙基甲酰胺的高立体选择性合成,并且在反应后实现了手性辅基的回收。

图5:立体选择性环丙化

为进一步证明其应用价值,作者以偕二硼基环丙烷作为合成砌块,进行了多种转化,其均保持了很好的立体选择性,并利用该课题组开发的胺化试剂,实现了药物分子-米那普伦7的立体选择性合成(图6)。

图6:合成应用

随后作者进行了一系列对照实验,以探究硼基团在环化反应中的重要性(图7)。将Bpin 基团改为甲基基团以生成碳负离子,并没有检测到的环化产物(图7a,式2),突出了Bpin 基团稳定作用的重要性。此外,异丙基硫叶立德和1w的Corey-Chaykovsky反应产生了相应的环丙烷产物,收率很高,但立体选择性却很低(1.8:1 d.r.)(图7a,式3),这突出表明硼基团在控制环丙烷化反应的立体选择性方面起着至关重要的作用。此外,还对具有相反构型的丙烯酸酯衍生物进行了环丙烷化反应(图7a,式4)。(E)-2-甲基丁-2-烯酸甲酯1ad可以生成环丙烷化产物2ad,收率为35%,d.r.为 4.6:1,而使用相反构型的烯烃(Z)-1ae则没有环丙烷化产物。这些结果表明,羰基氧原子与硼原子的预配位可能发生在硼基团对烯烃单元的亲核攻击之前(图7b)。首先,羰基氧与硼配位生成Int-A,随后“分子内”亲核进攻烯烃,生成六元烯醇中间体Int-B,随后的分子内环化反应生成了偕二硼基环丙烷。

图7:反应机理探索

接下来,作者尝试捕获硼叶立德(图8)。加入甲醇后,形成了甲氧基取代的偕二硼甲烷17,证明了甲醇质子化硼叶立德的过程中生成了溴代偕二硼甲烷和甲醇锂。同样,含NH的烯烃18也没有生成所需的环化产物,硼叶立德对NH进行去质子化后,发生了1,2-N迁移,生成了氮取代的偕二硼甲烷19。与酮20发生硼-Witting反应生成四取代溴硼烯烃21也证明了硼叶立德的生成。

图8:硼叶立德的捕获

综上,以DBDBM为硼叶立德前体与烯烃的环丙化反应提供了一种获得各种偕二硼基环丙烷的模块化策略,为合成复杂的环丙烷奠定了基础。实验结果表明,硼基团对于反应的进行和立体选择性的控制至关重要。

非常感谢刘超教授对Chem-Station的支持

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/angew%ef%bc%9a%e5%88%a9%e7%94%a8%e7%a1%bc%e5%8f%b6%e7%ab%8b%e5%be%b7%e5%ae%9e%e7%8e%b0%e7%ab%8b%e4%bd%93%e9%80%89%e6%8b%a9%e6%80%a7%e6%9e%84%e5%bb%ba%e5%81%95%e4%ba%8c%e7%a1%bc%e5%9f%ba%e7%8e%af.html/feed 0 51339
上海师范大学赵宝国教授与陈雯雯教授团队J. Am. Chem. Soc.:羰基催化策略实现炔丙胺α-C-H键对α,β-不饱和酮的不对称共轭加成反应 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e4%b8%8a%e6%b5%b7%e5%b8%88%e8%8c%83%e5%a4%a7%e5%ad%a6%e8%b5%b5%e5%ae%9d%e5%9b%bd%e6%95%99%e6%8e%88%e4%b8%8e%e9%99%88%e9%9b%af%e9%9b%af%e6%95%99%e6%8e%88%e5%9b%a2%e9%98%9fj-am-chem-soc-%ef%bc%9a.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e4%b8%8a%e6%b5%b7%e5%b8%88%e8%8c%83%e5%a4%a7%e5%ad%a6%e8%b5%b5%e5%ae%9d%e5%9b%bd%e6%95%99%e6%8e%88%e4%b8%8e%e9%99%88%e9%9b%af%e9%9b%af%e6%95%99%e6%8e%88%e5%9b%a2%e9%98%9fj-am-chem-soc-%ef%bc%9a.html#respond CS editor Sat, 21 Sep 2024 00:57:43 +0000 研究论文介绍 β-不饱和酮 不对称 共轭加成 羰基催化,炔丙胺,α //www.gsbet888.com/?p=51303 作者:石油醚 导读: 近日,上海师范大学赵宝国教授与陈雯雯教授团队在J. Am. Chem. Soc.中发表题为 [ Direct Enantioselective α-C–H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones via Carbonyl Catalysis ] 论文,利用一种具有苯–吡啶联芳基骨架与大位阻酰胺侧链的新型吡哆醛作为羰基催化剂,成功实现了未保护的炔丙胺α-C-H键对α,β-不饱和酮的直接不对称加成反应,加成产物原位分子内环化后,以良好的收率和优秀的立体选择性 (up to 99% ee, >20:1 dr)构建了一系列手性多取代1-吡咯啉衍生物,拓宽了羰基催化的适用范围,拓展了基于维生素B6的仿生催化化学。 “Direct Enantioselective α-C–H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones via Carbonyl Catalysis Ruixin Zhang†, Jiwei Xu†, Siqi Liu, Shibo Si, Jiayao Chen, Lingxiao Wang, Wen-Wen Chen*, Baoguo Zhao* J. Am. Chem. Soc. 2024, doi: 10.1021/jacs.4c09840” 正文: 炔丙胺α-C-H键对亲电试剂的直接不对称加成是构建手性α-取代炔丙胺化合物的高效策略。然而,N-未保护的炔丙基胺却难以对α,β-不饱和酮进行直接的α-C-H 共轭加成,主要是由于炔丙基胺α-C-H 键的酸性非常低 (pKa ~ 42.6),难以去质子化形成用于引发加成的活性碳负离子中间体;其次,炔丙胺中裸露的氨基以及炔基均为高活性官能团,会干扰反应或毒化催化剂;此外,与醛和亚胺相比,α,β-不饱和酮的亲电性较弱,并且在惰性伯胺的羰基催化α-C-H 转化中显示出低得多的反应活性。因此,实现炔丙胺α-C-H键对α,β-不饱和酮的不对称加成反应具有较大的挑战性。 近日,上海师范大学赵宝国教授和陈雯雯教授团队基于羰基催化策略,通过使用一种具有苯–吡啶联芳基骨架与大位阻酰胺侧链的新型吡哆醛作为羰基催化剂,成功实现了N-未保护的炔丙胺对α,β-不饱和酮的首次对映选择性α-C-H共轭加成,随后共轭加成产物进行原位分子内缩合,以良好的收率和优秀的立体选择性 (高达>20:1 dr,99% ee) 高效构建了一系列手性多取代1-吡咯啉衍生物,拓展了羰基催化的适用范围。 近年来,上海师范大学赵宝国教授、陈雯雯教授团队长期从事于羰基催化未保护伯胺的不对称α-C-H键官能团化研究,成功实现了活化伯胺,如α-氨基酸酯,与不同的亲电试剂的多种不对称转化,例如甘氨酸酯的不对称仿生Mannich反应(Science. 2018, 360, 1438)、仿生Aldol反应(Angew. Chem. Int. Ed. 2021, 60, 20166)、Michael加成反应 (Angew. Chem. Int. Ed. 2021, 60, 10588)、不对称烯丙基化反应 (Angew. Chem. Int. Ed. 2022, 61, e202200850) 以及丙氨酸酯的不对称烷基化反应 (ACS Catal. 2023, 13, 9150-9157),得到一系列手性氨基酸衍生物。对于惰性伯胺如苄胺和炔丙基胺,也成功实现了它们对高活性亲电试剂(如醛和三氟甲基酮)的不对称加成 (Nat. Catal. 2022, 5, 1061-1068; […]

作者:石油醚

导读:

近日,上海师范大学赵宝国教授与陈雯雯教授团队J. Am. Chem. Soc.中发表题为 [ Direct Enantioselective α-C–H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones via Carbonyl Catalysis ] 论文,利用一种具有吡啶联芳基骨架与大位阻酰胺侧链的新型吡哆醛作为羰基催化剂,成功实现了未保护的炔丙胺α-C-H键对α,β-不饱和酮的直接不对称加成反应,加成产物原位分子内环化后,以良好的收率和优秀的立体选择性 (up to 99% ee, >20:1 dr)构建了一系列手性多取代1-吡咯啉衍生物,拓宽了羰基催化的适用范围,拓展了基于维生素B6的仿生催化化学。

Direct Enantioselective α-C–H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones via Carbonyl Catalysis

Ruixin Zhang, Jiwei Xu, Siqi Liu, Shibo Si, Jiayao Chen, Lingxiao Wang, Wen-Wen Chen*, Baoguo Zhao*

J. Am. Chem. Soc. 2024doi: 10.1021/jacs.4c09840

正文:

炔丙胺α-C-H键对亲电试剂的直接不对称加成是构建手性α-取代炔丙胺化合物的高效策略。然而,N-未保护的炔丙基胺却难以对α,β-不饱和酮进行直接的α-C-H 共轭加成,主要是由于炔丙基胺α-C-H 键的酸性非常低 (pKa ~ 42.6),难以去质子化形成用于引发加成的活性碳负离子中间体;其次,炔丙胺中裸露的氨基以及炔基均为高活性官能团,会干扰反应或毒化催化剂;此外,与醛和亚胺相比,α,β-不饱和酮的亲电性较弱,并且在惰性伯胺的羰基催化α-C-H 转化中显示出低得多的反应活性。因此,实现炔丙胺α-C-H键对α,β-不饱和酮的不对称加成反应具有较大的挑战性。

近日,上海师范大学赵宝国教授和陈雯雯教授团队基于羰基催化策略,通过使用一种具有吡啶联芳基骨架与大位阻酰胺侧链的新型吡哆醛作为羰基催化剂成功实现了N-未保护的炔丙胺对α,β-不饱和酮的首次对映选择性α-C-H共轭加成随后共轭加成产物进行原位分子内缩合,以良好的收率和优秀的立体选择性 (高达>20:1 dr99% ee) 高效构建了一系列手性多取代1-吡咯啉衍生物,拓展了羰基催化的适用范围。

近年来,上海师范大学赵宝国教授、陈雯雯教授团队长期从事于羰基催化未保护伯胺的不对称α-C-H键官能团化研究,成功实现了活化伯胺,如α-氨基酸酯,与不同的亲电试剂的多种不对称转化,例如甘氨酸酯的不对称仿生Mannich反应(Science. 2018, 360, 1438)、仿生Aldol反应(Angew. Chem. Int. Ed. 2021, 60, 20166)、Michael加成反应 (Angew. Chem. Int. Ed. 2021, 60, 10588)、不对称烯丙基化反应 (Angew. Chem. Int. Ed. 2022, 61, e202200850) 以及丙氨酸酯的不对称烷基化反应 (ACS Catal. 2023, 13, 9150-9157),得到一系列手性氨基酸衍生物。对于惰性伯胺如苄胺和炔丙基胺,也成功实现了它们对高活性亲电试剂(如醛和三氟甲基酮)的不对称加成 (Nat. Catal. 2022, 5, 1061-1068; Angew. Chem. Int. Ed. 2022, e202206111)。在此基础上,该团队发展了炔丙胺对低活性α,β-不饱和酮的不对称共轭加成。

经过一系列条件筛选,作者在最优条件下分别考察了炔丙胺和α,β-不饱和酮的底物范围。无论是富电子或缺电子的芳基炔丙胺,还是烷基取代的炔丙胺,都能与苯基或环丙基取代的α,β-不饱和酮顺利地进行不对称α-C共轭加成反应(60-92% yield,dr>20:1, 92-99% ee)。当α,β-不饱和酮连接不同的官能团,如芳基、杂环、烯基、或炔基等时,反应均具有良好的收率和立体选择性。单烷基和二烷基取代的α,β-不饱和酮仍然以中等至良好的产率产生1-吡咯啉类产物,同时保持良好的非对映选择性和对映选择性。当使用含有衍生自香茅醛、D-葡萄糖、克唑替尼中间体或雌二醇的手性α,β-不饱和酮为底物时,反应也可以顺利进行,以良好的产率和非对映选择性得到相应的目标产物。

为了证明该转化的实用性,作者分别进行了α,β-不饱和酮2a2ab的克级反应,均能以良好的产率和优异的对映选择性与非对映选择性得到相应的手性1-吡咯啉3a3ab

该反应的产物具有良好的合成应用。在Lindlar催化剂的存在下,化合物3a能被氢化成顺式烯基取代的1-吡咯啉5,同时对映体纯度没有任何损失。当使用Pd/C作为催化剂,3ab的碳碳三键可以被完全氢化,以94%的收率和98% ee得到烷基取代的1-吡咯啉6。用氢化二异丁基铝(DIBAL-H)可以实现内亚胺基团的选择性还原,以93%收率和98% ee得到单一立体异构体7。此外,3ab可与烯丙基氯化镁反应,得到手性多取代吡咯烷8作为单一异构体(91% yield,99% ee)。

在前期的研究基础上,作者对该反应机理进行合理的预测。在碱NaOH的存在下,吡哆醛催化剂4f转化为钠盐99与炔丙胺1缩合得到亚胺10。化合物10的α-C-H键被NaOH去质子化,形成离域的α-氨基碳负离子中间体11,然后经历与α,β-不饱和酮2的不对称1,4-共轭加成,随后水解,得到中间体14,并再生吡哆醛催化剂9,完成催化循环。中间体14通过分子内环化原位转化为最终产物暨炔基取代的1-吡咯啉3。此外,作者也通过计算提出了下图所示的可能的过渡态12a,对反应的立体选择性控制进行了解释。值得指出的是,钠离子与吡哆醛物种和α,β-不饱和酮配位,不仅增强了α,β-不饱和酮的亲电性,而且使两种反应物以特定的空间排列结合在一起,促进了共轭加成,并实现了出色的立体控制。此外,具有较小苯-吡啶骨架的吡哆醛催化剂4f比萘环-吡啶骨架的催化剂诱导出更高的对映选择性。这可能是由于4f中吡啶环上下两侧之间的空间位阻差异更大,使得上侧面更有利于α,β-不饱和酮的接近,从而实现更好的立体控制。

该反应存在明显的同位素效应,KIE值为3.2,表明亚胺 10 的去质子化生成中间体11 可能是反应的决定性步骤。同时,作者也进行了Hammett 的研究。对位取代的炔丙胺 1 与α,β-不饱和酮 2a 反应,以 log(kX/kH) 对取代基常数 σp 做Hammett曲线,得到了一条斜率为正的直线 (ρ = 0.53),表明吸电子取代基会加速反应的进行。

总结:

上海师范大学赵宝国教授和陈雯雯教授团队利用大位阻酰胺侧链手性吡哆醛催化剂,在温和条件下成功实现了炔丙胺对α,β-不饱和酮的直接不对称α-C-H 共轭加成反应。加成产物进行原位分子内环化,以良好的产率和优秀的立体选择性构建了一系列手性1-吡咯啉衍生物。该研究展示了仿生羰基催化剂在惰性C-H键不对称官能化中的强大作用,大大拓展了基于维生素B6的仿生催化化学。

(非常感谢赵宝国教授和陈雯雯教授对Chem-Station的支持)

相关链接:

  1. 羰基催化策略实现苄胺α位的C-H键对醛的不对称加成
  2. 「Spotlight Research」羰基催化策略实现苄胺α位的C-H键对醛的不对称加成
  3. 羰基催化策略实现炔丙胺α CH键对三氟甲基酮的不对称加成反应 | 新利18网址
  4. 上海师范大学赵宝国教授课题组Angew: 羰基催化的甘氨酸酯与三氟甲基酮之间的高效不对称仿生Aldol反应 | 新利18网址
  5. 上海师范大学赵宝国教授课题组Angew: 羰基催化甘氨酸酯对映选择性合成焦谷氨酸酯 | 新利18网址
  6. 协同催化策略实现烷基伯胺α-C(sp3)-H烯丙基烷基化反应 | 新利18网址
请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e4%b8%8a%e6%b5%b7%e5%b8%88%e8%8c%83%e5%a4%a7%e5%ad%a6%e8%b5%b5%e5%ae%9d%e5%9b%bd%e6%95%99%e6%8e%88%e4%b8%8e%e9%99%88%e9%9b%af%e9%9b%af%e6%95%99%e6%8e%88%e5%9b%a2%e9%98%9fj-am-chem-soc-%ef%bc%9a.html/feed 0 51303
港科大钱培元/唐本忠/朱广合作CEJ: 从海洋细菌代谢产物中首次发现具有聚集诱导发光效应的分子 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e6%b8%af%e7%a7%91%e5%a4%a7%e9%92%b1%e5%9f%b9%e5%85%83-%e5%94%90%e6%9c%ac%e5%bf%a0-%e6%9c%b1%e5%b9%bf%e5%90%88%e4%bd%9ccej%ef%bc%9a-%e4%bb%8e%e6%b5%b7%e6%b4%8b%e7%bb%86%e8%8f%8c%e4%bb%a3%e8%b0%a2.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e6%b8%af%e7%a7%91%e5%a4%a7%e9%92%b1%e5%9f%b9%e5%85%83-%e5%94%90%e6%9c%ac%e5%bf%a0-%e6%9c%b1%e5%b9%bf%e5%90%88%e4%bd%9ccej%ef%bc%9a-%e4%bb%8e%e6%b5%b7%e6%b4%8b%e7%bb%86%e8%8f%8c%e4%bb%a3%e8%b0%a2.html#respond CS editor Thu, 19 Sep 2024 00:35:58 +0000 研究论文介绍 //www.gsbet888.com/?p=51272 作者:石油醚 导读 近日,香港科技大学钱培元、唐本忠和朱广教授等团队合作,首次从海洋细菌的次级代谢产物中鉴定出具有AIE特性的喹唑酮类生物碱HMPQ。该分子具有激发态分子内质子转移(excited-state intramolecular proton transfer,ESIPT)的特性。激发态下,由于分子内氢键的作用,HMPQ会经历“烯醇-酮”的可逆互变。不同极性溶剂对分子内氢键的抑制效应各异,使得HMPQ在不同溶剂体系中呈现出由蓝光到绿光的可控发射变化。通过XRD单晶分析和DFT计算,作者揭示了微观层面的分子堆积方式和构象差异是导致宏观荧光性能差异的根本原因。这一构效关系的研究凸显了晶体学在AIE活性化合物设计与开发中的关键作用。 “Discovery of a novel marine bacterial AIEgen that lights up specific G-quadruplexes Wenkang Ye, Xinnan Wang, Parvej Alam, Changdong Liu , Monica C. Suen, Jianwei Tang, Herman H.Y. Sung , Ian D. Williams, Eric Y. Yu, Jacky W.Y. Lam, Guang Zhu*, Ben-Zhong Tang*, Pei-Yuan Qian* Chem. Eng. J, 2024, 497, 154947. Doi: 10.1016/j.cej.2024.154947.” 摘要        二十年前,聚集诱导发光(Aggregation-induced emission, AIE)现象的发现标志着光物理及材料科学的重大进步。AIE材料在固态或聚集态下表现出优异的光学性质,克服了传统荧光材料在高浓度或聚集态下荧光淬灭(Aggregation-caused quenching, ACQ)的局限性,促进了多功能AIE分子(AIEgens)在生物成像、光电和生化传感等领域的发展。研究团队首次从海洋细菌代谢物中发现了具有AIE性质的新型喹唑酮生物碱小分子(HMPQ)。光物理表征结果显示,HMPQ在不同极性溶剂和固态多晶型中的发光表现各不相同。此外,HMPQ对特殊的核酸结构G-四链体(G4s)表现出特异性结合亲和力,能够在不改变其构象的情况下点亮这类核酸结构。其卓越的安全性和对细胞中G4s结构的精确可视化能力,表明HMPQ在生物应用中的巨大潜力,为开发用作高效G4探针的新一代BioAIEgens提供了新的思路。 背景及内容 聚集诱导发光(Aggregation-induced emission, AIE)材料在固态或聚集态下表现出优异的光学性质,克服了传统荧光材料在高浓度或聚集态下荧光淬灭的局限性。这一特性使AIE材料在生物成像、光电子学和生化传感等领域具有广泛的应用前景。从AIE概念的提出至今,全球已有145个国家或地区、约12,000个研究机构或部门从事AIE相关领域研究,总引用次数超过30万次,近两年每年新增的SCI论文超过1200篇。 然而,现有的AIE分子主要基于合成染料,其合成与纯化过程可能带来环境污染,并存在生物兼容性不确定的问题。此外,合成方法的局限性也限制了结构多样性的扩展,成为其进一步发展的瓶颈。因此,开发天然产物来源的生物AIE分子(BioAIEgens)成为重要的研究方向,因其具备可再生、可生物降解、无毒或低毒性、优异的生物相容性以及多样的药理活性。 目前,已知的生物AIE分子主要来源于植物,如姜黄素、槲皮素、小檗碱和香豆素等(图1),这些分子在生物相容性和生物活性方面表现出色。然而,微生物来源的AIE分子尚未被充分探索。与植物相比,细菌具有更短的生长周期,培养条件相对简单可控,更容易进行基因工程改造以提高目标产物的产量。与此同时,海洋覆盖了地球70%以上的表面积,大量生物生活在与陆地截然不同的环境中。海洋独特的环境孕育了众多独特的微生物种类,这些微生物适应了极端的生存条件,进化出多样的代谢途径,能够生产出结构多样且具有生物活性的天然产物。因此,海洋微生物天然产物是值得挖掘的AIE分子宝库。 图1. 各类已报道的植物来源的AIE天然产物及其在荧光传感和生物成像中的应用 近日,香港科技大学钱培元、唐本忠和朱广教授等团队合作,首次从海洋细菌的次级代谢产物中鉴定出具有AIE特性的喹唑酮类生物碱HMPQ。该分子具有激发态分子内质子转移(excited-state intramolecular proton transfer,ESIPT)的特性。激发态下,由于分子内氢键的作用,HMPQ会经历“烯醇-酮”的可逆互变。不同极性溶剂对分子内氢键的抑制效应各异,使得HMPQ在不同溶剂体系中呈现出由蓝光到绿光的可控发射变化(图3)。此外,HMPQ在同一溶剂环境中能够形成多种晶形,其中针状晶形在激发态下的荧光发射效率显著高于块状晶体(图5)。通过XRD单晶分析和DFT计算,作者揭示了微观层面的分子堆积方式和构象差异是导致宏观荧光性能差异的根本原因。这一构效关系的研究凸显了晶体学在AIE活性化合物设计与开发中的关键作用。 图2. 微生物来源的AIE小分子HMPQ的发现 图3. HMPQ在溶液态的光物理表征 图4. HMPQ在聚集态的光物理表征 图5. HMPQ两种晶型展现出截然不同的发光性质 G-四链体(G4s)在人类基因相关的生物过程中发挥重要作用,成为多种人类疾病诊断与治疗的潜在靶点。HMPQ在体外和细胞内环境中均能在不改变G4构象的情况下精准标记这些非典型核酸结构,展现出极高的选择性和灵敏度(图6上a-d)。共聚焦成像结果表明,HMPQ通过绿色荧光成功标记细胞内的G-四链体结构,其与G4s的商用抗体标记物BG4的重合系数高达94%(图6下a-e)。 图6. HMPQ与G四链体可特异性结合并在细胞内外点亮该结构 该研究成果近日以Discovery of a novel marine bacterial AIEgen that lights up specific G-quadruplexes为题发表在Chemical Engineering Journal上,钱培元教授,唐本忠院士和朱广教授为该论文共同通讯作者。香港科技大学叶文康博士和王欣楠博士为该论文共同第一作者。 (非常感谢叶文康博士提供稿件) 请登陆TCI试剂官网查看更多内容 https://www.tcichemicals.com/CN/zh/

作者:石油醚

导读

近日,香港科技大学钱培元、唐本忠和朱广教授等团队合作,首次从海洋细菌的次级代谢产物中鉴定出具有AIE特性的喹唑酮类生物碱HMPQ。该分子具有激发态分子内质子转移(excited-state intramolecular proton transfer,ESIPT)的特性。激发态下,由于分子内氢键的作用,HMPQ会经历“烯醇-酮”的可逆互变。不同极性溶剂对分子内氢键的抑制效应各异,使得HMPQ在不同溶剂体系中呈现出由蓝光到绿光的可控发射变化。通过XRD单晶分析和DFT计算,作者揭示了微观层面的分子堆积方式和构象差异是导致宏观荧光性能差异的根本原因。这一构效关系的研究凸显了晶体学在AIE活性化合物设计与开发中的关键作用。

“Discovery of a novel marine bacterial AIEgen that lights up specific G-quadruplexes

Wenkang Ye, Xinnan Wang, Parvej Alam, Changdong Liu , Monica C. Suen, Jianwei Tang, Herman H.Y. Sung , Ian D. Williams, Eric Y. Yu, Jacky W.Y. Lam, Guang Zhu*, Ben-Zhong Tang*, Pei-Yuan Qian*

Chem. Eng. J, 2024, 497, 154947. Doi: 10.1016/j.cej.2024.154947.

摘要

       二十年前,聚集诱导发光(Aggregation-induced emission, AIE)现象的发现标志着光物理及材料科学的重大进步。AIE材料在固态或聚集态下表现出优异的光学性质,克服了传统荧光材料在高浓度或聚集态下荧光淬灭(Aggregation-caused quenching, ACQ)的局限性,促进了多功能AIE分子(AIEgens)在生物成像、光电和生化传感等领域的发展。研究团队首次从海洋细菌代谢物中发现了具有AIE性质的新型喹唑酮生物碱小分子(HMPQ)。光物理表征结果显示,HMPQ在不同极性溶剂和固态多晶型中的发光表现各不相同。此外,HMPQ对特殊的核酸结构G-四链体(G4s)表现出特异性结合亲和力,能够在不改变其构象的情况下点亮这类核酸结构。其卓越的安全性和对细胞中G4s结构的精确可视化能力,表明HMPQ在生物应用中的巨大潜力,为开发用作高效G4探针的新一代BioAIEgens提供了新的思路。

背景及内容

聚集诱导发光(Aggregation-induced emission, AIE)材料在固态或聚集态下表现出优异的光学性质,克服了传统荧光材料在高浓度或聚集态下荧光淬灭的局限性。这一特性使AIE材料在生物成像、光电子学和生化传感等领域具有广泛的应用前景。从AIE概念的提出至今,全球已有145个国家或地区、约12,000个研究机构或部门从事AIE相关领域研究,总引用次数超过30万次,近两年每年新增的SCI论文超过1200篇。

然而,现有的AIE分子主要基于合成染料,其合成与纯化过程可能带来环境污染,并存在生物兼容性不确定的问题。此外,合成方法的局限性也限制了结构多样性的扩展,成为其进一步发展的瓶颈。因此,开发天然产物来源的生物AIE分子(BioAIEgens)成为重要的研究方向,因其具备可再生、可生物降解、无毒或低毒性、优异的生物相容性以及多样的药理活性。

目前,已知的生物AIE分子主要来源于植物,如姜黄素、槲皮素、小檗碱和香豆素等(图1),这些分子在生物相容性和生物活性方面表现出色。然而,微生物来源的AIE分子尚未被充分探索。与植物相比,细菌具有更短的生长周期,培养条件相对简单可控,更容易进行基因工程改造以提高目标产物的产量。与此同时,海洋覆盖了地球70%以上的表面积,大量生物生活在与陆地截然不同的环境中。海洋独特的环境孕育了众多独特的微生物种类,这些微生物适应了极端的生存条件,进化出多样的代谢途径,能够生产出结构多样且具有生物活性的天然产物。因此,海洋微生物天然产物是值得挖掘的AIE分子宝库。

1. 各类已报道的植物来源的AIE天然产物及其在荧光传感和生物成像中的应用

近日,香港科技大学钱培元、唐本忠和朱广教授等团队合作,首次从海洋细菌的次级代谢产物中鉴定出具有AIE特性的喹唑酮类生物碱HMPQ。该分子具有激发态分子内质子转移(excited-state intramolecular proton transfer,ESIPT)的特性。激发态下,由于分子内氢键的作用,HMPQ会经历“烯醇-酮”的可逆互变。不同极性溶剂对分子内氢键的抑制效应各异,使得HMPQ在不同溶剂体系中呈现出由蓝光到绿光的可控发射变化(图3)。此外,HMPQ在同一溶剂环境中能够形成多种晶形,其中针状晶形在激发态下的荧光发射效率显著高于块状晶体(图5)。通过XRD单晶分析和DFT计算,作者揭示了微观层面的分子堆积方式和构象差异是导致宏观荧光性能差异的根本原因。这一构效关系的研究凸显了晶体学在AIE活性化合物设计与开发中的关键作用。

2. 微生物来源的AIE小分子HMPQ的发现

3. HMPQ在溶液态的光物理表征

4. HMPQ在聚集态的光物理表征

5. HMPQ两种晶型展现出截然不同的发光性质

G-四链体(G4s)在人类基因相关的生物过程中发挥重要作用,成为多种人类疾病诊断与治疗的潜在靶点。HMPQ在体外和细胞内环境中均能在不改变G4构象的情况下精准标记这些非典型核酸结构,展现出极高的选择性和灵敏度(图6上a-d)。共聚焦成像结果表明,HMPQ通过绿色荧光成功标记细胞内的G-四链体结构,其与G4s的商用抗体标记物BG4的重合系数高达94%(图6下a-e)。

6. HMPQG四链体可特异性结合并在细胞内外点亮该结构

该研究成果近日以Discovery of a novel marine bacterial AIEgen that lights up specific G-quadruplexes为题发表在Chemical Engineering Journal上,钱培元教授,唐本忠院士和朱广教授为该论文共同通讯作者。香港科技大学叶文康博士和王欣楠博士为该论文共同第一作者。

非常感谢叶文康博士提供稿件

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/

//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e6%b8%af%e7%a7%91%e5%a4%a7%e9%92%b1%e5%9f%b9%e5%85%83-%e5%94%90%e6%9c%ac%e5%bf%a0-%e6%9c%b1%e5%b9%bf%e5%90%88%e4%bd%9ccej%ef%bc%9a-%e4%bb%8e%e6%b5%b7%e6%b4%8b%e7%bb%86%e8%8f%8c%e4%bb%a3%e8%b0%a2.html/feed 0 51272 「Spotlight Research」准五元环过渡态构建烯丙基次磺酰胺:罕见的离子对重排机理 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/09/%e3%80%8cspotlight-research%e3%80%8d%e5%87%86%e4%ba%94%e5%85%83%e7%8e%af%e8%bf%87%e6%b8%a1%e6%80%81%e6%9e%84%e5%bb%ba%e7%83%af%e4%b8%99%e5%9f%ba%e6%ac%a1%e7%a3%ba%e9%85%b0%e8%83%ba%ef%bc%9a%e7%bd%95.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/09/%e3%80%8cspotlight-research%e3%80%8d%e5%87%86%e4%ba%94%e5%85%83%e7%8e%af%e8%bf%87%e6%b8%a1%e6%80%81%e6%9e%84%e5%bb%ba%e7%83%af%e4%b8%99%e5%9f%ba%e6%ac%a1%e7%a3%ba%e9%85%b0%e8%83%ba%ef%bc%9a%e7%bd%95.html#respond CS editor Sat, 14 Sep 2024 00:19:57 +0000 热点研究 [2.3]-重排 次磺酰胺 烯丙基胺 硫亚胺 离子对机理 //www.gsbet888.com/?p=51260 作者:石油醚 本期热点研究,我们邀请到了本文共同第一作者,来自四川大学的博士生肖志杰为我们分享。 近日,刘小华教授和冯小明教授团队在angew上发表了一篇题为“Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route”的研究论文。作者报道了一类烯丙基硫亚胺重排反应的新策略,并进行了系统的机理研究与应用探索。同时,该反应也为手性烯丙基次磺酰胺、烯丙基胺以及不饱和γ-氨基酸的合成,提供了一种新的思路和方法。 “Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route. Zhijie Xiao, Maoping Pu, Yuzhen Li, Wei Yang, Fei Wang, Xiaoming Feng*, Xiaohua Liu*  Angew. Chem. Int. Ed. 2024, e202414712. DOI: 10.1002/anie.202414712” Q1. 请对“Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route”做一个简单介绍 在文章中,我们报道了一种烯丙基硫亚胺不对称反应的新策略。该工作选取了可以高效构建硫亚胺的次磺酰胺作为重排反应的S-N部分,以及课题组充分发展的烯丙基重氮吡唑酰胺作为烯丙基部分,通过原位构建烯丙基硫叶立德中间体,实现了一个形式上的[2,3]-重排反应。而根据相关的机理实验和DFT计算表明,该反应可能历经了一个有趣的离子对机理过程,其中金属卡宾的自旋态以及烯烃的顺反均对反应的选择性有着重要的影响。而据我们所知,这类机理在[2,3]-重排反应中似乎没有过相关报道。 Q2. 在研究中遇到过什么困难?又是如何克服? 在研究中遇到的最大困难可能还是机理部分。因为要证明重排过程的可行性,那么原位制备产物中间体,再投入反应得到产物是最直观的手段。合成中间体花费了大量时间,筛选了许多条件,最后才在有机胺化试剂氮杂吖啶的条件下,拿到了少量的对应产物。 Q3. 研究过程中,是否出现过畏难甚至放弃的心理历程? 最开始做机理实验基本上是一直失败,也短暂出现过一段消极的情绪。不过,这个时候把当前的反应先放一放,去投入做其他事情,一段时间后再回来看原来的问题,很快就找到了解题思路。这或许就是“只缘身在此山中”最好的切身体会。 Q4. 未来希望从事化学的什么方向呢? 个人希望能继续研究一些新颖的有趣的反应,或者从事其他更加工业化的,更加贴近生活的,更能产生经济效益的研究方向和项目。 Q5. 最后,有什么话想对读者说吗? 不忘初心,方得始终。 导师介绍 刘小华 教授 简历 1996.9-2000.6 湖北师范学院化学系学习,获理学学士学位。 2000.9-2003.6 四川大学化学学院分析化学专业学习,获理学硕士学位。 2003.9-2006.6 四川大学化学学院有机化学专业学习,获理学博士学位。 2006.7-2010.6 四川大学化学学院副教授,硕士生导师。 2010.7-至今   四川大学化学学院教授,2012年担任博士生导师。 2011年获教育部新世纪优秀人才计划资助;2012年获国家自然科学基金委优秀青年基金资助;2013年入选四川省学术和技术带头人后备人选;获霍英东青年教师基金资助;2015年入选第二届国家高层次人才特殊支持计划青年人才,享受国务院政府特殊津贴专家;2016年获国家杰出青年科学基金资助;2017年国家百千万人才工程入选者和有突出贡献中青年专家;2018年入选四川省学术和技术带头人;2020年获全国三八红旗手称号;2021年当选英国皇家化学会会士。 任Organic & Biomolecular Chemistry副主编,Chinese Chemical Letter和《化学学报》编委委员,《高等学校化学学报》青年执行编委,中国化学会青年工作委员会委员、中国化学会有机化学学科委员、手性化学专业委员会副主任和物理有机化学专业委员会委员。 主要研究方向 主要从事新型手性催化剂的设计合成、不对称催化反应、手性药物和生理活性化合物的高效高选择性合成研究。欢迎各位优秀学子前来报考研究生,详见课题组主页http://www.scu.edu.cn/chem_asl. 请登陆TCI试剂官网查看更多内容 https://www.tcichemicals.com/CN/zh/

作者:石油醚

本期热点研究,我们邀请到了本文共同第一作者,来自四川大学的博士生肖志杰为我们分享。

近日,刘小华教授和冯小明教授团队在angew上发表了一篇题为“Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route”的研究论文。作者报道了一类烯丙基硫亚胺重排反应的新策略,并进行了系统的机理研究与应用探索。同时,该反应也为手性烯丙基次磺酰胺、烯丙基胺以及不饱和γ-氨基酸的合成,提供了一种新的思路和方法。

“Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route.

Zhijie Xiao, Maoping Pu, Yuzhen Li, Wei Yang, Fei Wang, Xiaoming Feng*, Xiaohua Liu*

 Angew. Chem. Int. Ed. 2024, e202414712. DOI: 10.1002/anie.202414712

Q1. 请对“Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route”做一个简单介绍

在文章中,我们报道了一种烯丙基硫亚胺不对称反应的新策略。该工作选取了可以高效构建硫亚胺的次磺酰胺作为重排反应的S-N部分,以及课题组充分发展的烯丙基重氮吡唑酰胺作为烯丙基部分,通过原位构建烯丙基硫叶立德中间体,实现了一个形式上的[2,3]-重排反应。而根据相关的机理实验和DFT计算表明,该反应可能历经了一个有趣的离子对机理过程,其中金属卡宾的自旋态以及烯烃的顺反均对反应的选择性有着重要的影响。而据我们所知,这类机理在[2,3]-重排反应中似乎没有过相关报道。

Q2. 在研究中遇到过什么困难?又是如何克服?

在研究中遇到的最大困难可能还是机理部分。因为要证明重排过程的可行性,那么原位制备产物中间体,再投入反应得到产物是最直观的手段。合成中间体花费了大量时间,筛选了许多条件,最后才在有机胺化试剂氮杂吖啶的条件下,拿到了少量的对应产物。

Q3. 研究过程中,是否出现过畏难甚至放弃的心理历程?

最开始做机理实验基本上是一直失败,也短暂出现过一段消极的情绪。不过,这个时候把当前的反应先放一放,去投入做其他事情,一段时间后再回来看原来的问题,很快就找到了解题思路。这或许就是“只缘身在此山中”最好的切身体会。

Q4. 未来希望从事化学的什么方向呢?

个人希望能继续研究一些新颖的有趣的反应,或者从事其他更加工业化的,更加贴近生活的,更能产生经济效益的研究方向和项目。

Q5. 最后,有什么话想对读者说吗?

不忘初心,方得始终。

导师介绍

刘小华 教授

简历

1996.9-2000.6 湖北师范学院化学系学习,获理学学士学位。

2000.9-2003.6 四川大学化学学院分析化学专业学习,获理学硕士学位。

2003.9-2006.6 四川大学化学学院有机化学专业学习,获理学博士学位。

2006.7-2010.6 四川大学化学学院副教授,硕士生导师。

2010.7-至今   四川大学化学学院教授,2012年担任博士生导师。

2011年获教育部新世纪优秀人才计划资助;2012年获国家自然科学基金委优秀青年基金资助;2013年入选四川省学术和技术带头人后备人选;获霍英东青年教师基金资助;2015年入选第二届国家高层次人才特殊支持计划青年人才,享受国务院政府特殊津贴专家;2016年获国家杰出青年科学基金资助;2017年国家百千万人才工程入选者和有突出贡献中青年专家;2018年入选四川省学术和技术带头人;2020年获全国三八红旗手称号;2021年当选英国皇家化学会会士。

任Organic & Biomolecular Chemistry副主编,Chinese Chemical Letter和《化学学报》编委委员,《高等学校化学学报》青年执行编委,中国化学会青年工作委员会委员、中国化学会有机化学学科委员、手性化学专业委员会副主任和物理有机化学专业委员会委员。

主要研究方向

主要从事新型手性催化剂的设计合成、不对称催化反应、手性药物和生理活性化合物的高效高选择性合成研究。欢迎各位优秀学子前来报考研究生,详见课题组主页http://www.scu.edu.cn/chem_asl.

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/%e7%83%ad%e7%82%b9%e7%a0%94%e7%a9%b6/2024/09/%e3%80%8cspotlight-research%e3%80%8d%e5%87%86%e4%ba%94%e5%85%83%e7%8e%af%e8%bf%87%e6%b8%a1%e6%80%81%e6%9e%84%e5%bb%ba%e7%83%af%e4%b8%99%e5%9f%ba%e6%ac%a1%e7%a3%ba%e9%85%b0%e8%83%ba%ef%bc%9a%e7%bd%95.html/feed 0 51260
准五元环过渡态构建烯丙基次磺酰胺:罕见的离子对重排机理 //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e5%87%86%e4%ba%94%e5%85%83%e7%8e%af%e8%bf%87%e6%b8%a1%e6%80%81%e6%9e%84%e5%bb%ba%e7%83%af%e4%b8%99%e5%9f%ba%e6%ac%a1%e7%a3%ba%e9%85%b0%e8%83%ba%ef%bc%9a%e7%bd%95%e8%a7%81%e7%9a%84%e7%a6%bb%e5%ad%90.html //www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e5%87%86%e4%ba%94%e5%85%83%e7%8e%af%e8%bf%87%e6%b8%a1%e6%80%81%e6%9e%84%e5%bb%ba%e7%83%af%e4%b8%99%e5%9f%ba%e6%ac%a1%e7%a3%ba%e9%85%b0%e8%83%ba%ef%bc%9a%e7%bd%95%e8%a7%81%e7%9a%84%e7%a6%bb%e5%ad%90.html#respond CS editor Thu, 12 Sep 2024 23:54:18 +0000 研究论文介绍 //www.gsbet888.com/?p=51215 作者:石油醚 导读: 近日,四川大学刘小华教授和冯小明教授团队报道了一类烯丙基硫亚胺不对称反应的新策略。针对重排反应的核心中间体烯丙基硫亚胺,相比于传统反应切断S-N键,作者将其分割为烯丙基部分和S-N部分。这一研究成果近期发表在Angew上,在读博士生肖志杰为文章第一作者,刘小华教授和冯小明院士为论文的通讯作者。 “Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route. Zhijie Xiao, Maoping Pu, Yuzhen Li, Wei Yang, Fei Wang, Xiaoming Feng*, Xiaohua Liu*  Angew. Chem. Int. Ed. 2024, e202414712. DOI: 10.1002/anie.202414712” 正文: 从上个世纪以来,含硫化合物一直是化学领域特别是有机化学中,非常重要的组成部分和研究对象。而作为广泛存在于天然产物和药物分子中的含N-S键化合物,因其独特的生物活性和多样的衍生价值,近年来也受到了有机化学家们越来越多的关注。 然而,烯丙基硫亚胺的[2,3]-重排反应,是一种有效合成烯丙基次磺酰胺以及烯丙基胺的方法。早在1950年,Challenger和Greenwood两人在研究二烯丙基二硫醚化合物的结构和反应中,就偶然发现了其副产物二烯丙基硫亚胺,在室温或加热条件下,会转化为一种质量相同的油状化合物,且放置冰箱可以保存3到4周。但当时两人并不清楚产物是什么结构,反应又是如何发生的。紧接着第二年,随着Ash的加入,他们通过该未知化合物的水解产物分析,推测该化合物为烯丙基次磺酰胺,其在原有的烯丙基硫亚胺基础上,发生了一个烯丙基的迁移。随后的1952年,他们又利用氯胺T等氮源试剂,实现了更多该类反应的例子,并再次对结构进行了对比与佐证。这也应该是烯丙基硫亚胺重排反应的第一例报道。 在随后的七十年间,烯丙基硫亚胺的重排反应被化学家们充分的发展,但主要策略还是集中在对硫醚的原位亚胺化构建中间体上。其不对称反应核心是构建手性烯丙基硫亚胺中间体,主要分为两类,一是预先制备手性硫醚,再进行有机胺化重排;另一种是对非手性硫醚进行不对称亚胺化,再发生重排。二者在重排过程中均可以保持手性,但也同时会受限于底物类型和胺源试剂。因此,发展一类新的烯丙基硫亚胺重排反应策略,依旧具有一定的价值和应用前景。 近日,四川大学刘小华教授和冯小明教授团队报道了一类烯丙基硫亚胺不对称反应的新策略。针对重排反应的核心中间体烯丙基硫亚胺,相比于传统反应切断S-N键,作者将其分割为烯丙基部分和S-N部分。 其中,烯丙基部分选取了其充分发展的一类烯基重氮吡唑酰胺作为前体,而S-N部分则是借鉴了Ellman课题组多次报道的次磺酰胺作为硫亚胺的前体,在氮氧-金属镍卡宾的作用下,原位生成烯丙基硫叶立德中间体,实现不对称重排反应。 文章中,作者首先对反应进行了初步筛选。金属、配体和溶剂均对反应有较大的影响,且延长反应时间,催化剂用量可以降到2%,区域选择性和立体选择性几乎得到保持(entry12)。 紧接着,作者又进行了底物扩展。大部分类型的底物都可以得到较好的结果,除了邻位芳基硫取代底物(27,28)。其较低的反应活性和较弱的手性控制可能暗示了硫对卡宾底物的靠近,佐证了重排反应的机理。另外,也需要注意得是,反应同样存在其局限性,烷基硫和烷基胺类的次磺酰胺其反应活性和手性控制均较差,可能是由于该类次磺酰胺对金属的毒化作用以及相关副反应的增强。 此外,产物衍生也被积极的探索。酰基吡唑基团可以被转化为酯基,酰胺和羧酸;次磺酰胺可以被转化为亚磺酰胺;值得注意得是,手性α,β-不饱和-γ-丁内酰胺也可以通过一步简单的衍生得到,其中涉及了一个有趣的Z→E顺反异构,且手性得到了保持,这在之前文献的报道中似乎是很难实现的。 当然,作者也进行了一些机理实验。首先是其他类型的酰胺,都没有拿到产物,进一步减小了直接氮氢插入的可能。随后是氘代实验,由于次磺酰胺不易被氘代,因此该实验可以证明水在其中参与了反应。此外,通过原位胺化烯丙基硫醚,可能的中间体也被制备,且在体系中检测到相关产物的生成,再一次验证了重排反应发生的可行性。 最后,为了探索和验证反应机理,作者进行了较为详细的DFT计算。首先,在手性氮氧金属镍配合物的作用下,烯基重氮生成三线态金属镍卡宾Int2T,且烯基与卡宾成顺式结构。随后,次磺酰胺发生进攻,并原位生成烯丙基硫叶立德Int3。直接的N-H插入由于能量过高,而被直接排除。在水的参与下,Int3发生了一个1,3-质子迁移,同时S-C键断裂,生成次磺酰胺阴离子与烯丙基正离子的离子对Int4。值得注意的是,作者并不能确定烯丙基硫亚胺中间体是否存在,更倾向于是一个同时发生得过程。最后在非共价力作用下,历经一个准五元环过渡态,实现了形式上的[2,3]-重排的过程。 总结 刘小华教授和冯小明院士团队报道了一类烯丙基硫亚胺重排反应的新策略和新机理,并进行了系统的机理研究与应用探索。同时,相关反应也为手性烯丙基次磺酰胺、烯丙基胺以及不饱和γ-氨基酸的合成,提供了一种新的思路和方法。 (非常感谢刘小华教授和冯小明院士团队对Chem-Station的大力支持) 导师介绍 刘小华 教授 简历 1996.9-2000.6 湖北师范学院化学系学习,获理学学士学位。 2000.9-2003.6 四川大学化学学院分析化学专业学习,获理学硕士学位。 2003.9-2006.6 四川大学化学学院有机化学专业学习,获理学博士学位。 2006.7-2010.6 四川大学化学学院副教授,硕士生导师。 2010.7-至今   四川大学化学学院教授,2012年担任博士生导师。 2011年获教育部新世纪优秀人才计划资助;2012年获国家自然科学基金委优秀青年基金资助;2013年入选四川省学术和技术带头人后备人选;获霍英东青年教师基金资助;2015年入选第二届国家高层次人才特殊支持计划青年人才,享受国务院政府特殊津贴专家;2016年获国家杰出青年科学基金资助;2017年国家百千万人才工程入选者和有突出贡献中青年专家;2018年入选四川省学术和技术带头人;2020年获全国三八红旗手称号;2021年当选英国皇家化学会会士。 任Organic & Biomolecular Chemistry副主编,Chinese Chemical Letter和《化学学报》编委委员,《高等学校化学学报》青年执行编委,中国化学会青年工作委员会委员、中国化学会有机化学学科委员、手性化学专业委员会副主任和物理有机化学专业委员会委员。 主要研究方向 主要从事新型手性催化剂的设计合成、不对称催化反应、手性药物和生理活性化合物的高效高选择性合成研究。欢迎各位优秀学子前来报考研究生,详见课题组主页http://www.scu.edu.cn/chem_asl 请登陆TCI试剂官网查看更多内容 https://www.tcichemicals.com/CN/zh/

作者:石油醚

导读:

近日,四川大学刘小华教授和冯小明教授团队报道了一类烯丙基硫亚胺不对称反应的新策略。针对重排反应的核心中间体烯丙基硫亚胺,相比于传统反应切断S-N键,作者将其分割为烯丙基部分和S-N部分。这一研究成果近期发表在Angew上,在读博士生肖志杰为文章第一作者,刘小华教授和冯小明院士为论文的通讯作者。

“Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route.

Zhijie Xiao, Maoping Pu, Yuzhen Li, Wei Yang, Fei Wang, Xiaoming Feng*, Xiaohua Liu*

 Angew. Chem. Int. Ed. 2024, e202414712. DOI: 10.1002/anie.202414712

正文:

从上个世纪以来,含硫化合物一直是化学领域特别是有机化学中,非常重要的组成部分和研究对象。而作为广泛存在于天然产物和药物分子中的含N-S键化合物,因其独特的生物活性和多样的衍生价值,近年来也受到了有机化学家们越来越多的关注。

然而,烯丙基硫亚胺的[2,3]-重排反应,是一种有效合成烯丙基次磺酰胺以及烯丙基胺的方法。早在1950年,Challenger和Greenwood两人在研究二烯丙基二硫醚化合物的结构和反应中,就偶然发现了其副产物二烯丙基硫亚胺,在室温或加热条件下,会转化为一种质量相同的油状化合物,且放置冰箱可以保存3到4周。但当时两人并不清楚产物是什么结构,反应又是如何发生的。紧接着第二年,随着Ash的加入,他们通过该未知化合物的水解产物分析,推测该化合物为烯丙基次磺酰胺,其在原有的烯丙基硫亚胺基础上,发生了一个烯丙基的迁移。随后的1952年,他们又利用氯胺T等氮源试剂,实现了更多该类反应的例子,并再次对结构进行了对比与佐证。这也应该是烯丙基硫亚胺重排反应的第一例报道。

在随后的七十年间,烯丙基硫亚胺的重排反应被化学家们充分的发展,但主要策略还是集中在对硫醚的原位亚胺化构建中间体上。其不对称反应核心是构建手性烯丙基硫亚胺中间体,主要分为两类,一是预先制备手性硫醚,再进行有机胺化重排;另一种是对非手性硫醚进行不对称亚胺化,再发生重排。二者在重排过程中均可以保持手性,但也同时会受限于底物类型和胺源试剂。因此,发展一类新的烯丙基硫亚胺重排反应策略,依旧具有一定的价值和应用前景。

近日,四川大学刘小华教授和冯小明教授团队报道了一类烯丙基硫亚胺不对称反应的新策略。针对重排反应的核心中间体烯丙基硫亚胺,相比于传统反应切断S-N键,作者将其分割为烯丙基部分和S-N部分。

其中,烯丙基部分选取了其充分发展的一类烯基重氮吡唑酰胺作为前体,而S-N部分则是借鉴了Ellman课题组多次报道的次磺酰胺作为硫亚胺的前体,在氮氧-金属镍卡宾的作用下,原位生成烯丙基硫叶立德中间体,实现不对称重排反应。

文章中,作者首先对反应进行了初步筛选。金属、配体和溶剂均对反应有较大的影响,且延长反应时间,催化剂用量可以降到2%,区域选择性和立体选择性几乎得到保持(entry12)。

紧接着,作者又进行了底物扩展。大部分类型的底物都可以得到较好的结果,除了邻位芳基硫取代底物(27,28)。其较低的反应活性和较弱的手性控制可能暗示了硫对卡宾底物的靠近,佐证了重排反应的机理。另外,也需要注意得是,反应同样存在其局限性,烷基硫和烷基胺类的次磺酰胺其反应活性和手性控制均较差,可能是由于该类次磺酰胺对金属的毒化作用以及相关副反应的增强。

此外,产物衍生也被积极的探索。酰基吡唑基团可以被转化为酯基,酰胺和羧酸;次磺酰胺可以被转化为亚磺酰胺;值得注意得是,手性α,β-不饱和-γ-丁内酰胺也可以通过一步简单的衍生得到,其中涉及了一个有趣的Z→E顺反异构,且手性得到了保持,这在之前文献的报道中似乎是很难实现的。

当然,作者也进行了一些机理实验。首先是其他类型的酰胺,都没有拿到产物,进一步减小了直接氮氢插入的可能。随后是氘代实验,由于次磺酰胺不易被氘代,因此该实验可以证明水在其中参与了反应。此外,通过原位胺化烯丙基硫醚,可能的中间体也被制备,且在体系中检测到相关产物的生成,再一次验证了重排反应发生的可行性。

最后,为了探索和验证反应机理,作者进行了较为详细的DFT计算。首先,在手性氮氧金属镍配合物的作用下,烯基重氮生成三线态金属镍卡宾Int2T,且烯基与卡宾成顺式结构。随后,次磺酰胺发生进攻,并原位生成烯丙基硫叶立德Int3。直接的N-H插入由于能量过高,而被直接排除。在水的参与下,Int3发生了一个1,3-质子迁移,同时S-C键断裂,生成次磺酰胺阴离子与烯丙基正离子的离子对Int4。值得注意的是,作者并不能确定烯丙基硫亚胺中间体是否存在,更倾向于是一个同时发生得过程。最后在非共价力作用下,历经一个准五元环过渡态,实现了形式上的[2,3]-重排的过程。

总结

刘小华教授和冯小明院士团队报道了一类烯丙基硫亚胺重排反应的新策略和新机理,并进行了系统的机理研究与应用探索。同时,相关反应也为手性烯丙基次磺酰胺、烯丙基胺以及不饱和γ-氨基酸的合成,提供了一种新的思路和方法。

(非常感谢刘小华教授和冯小明院士团队对Chem-Station的大力支持)

导师介绍

刘小华 教授

简历

1996.9-2000.6 湖北师范学院化学系学习,获理学学士学位。

2000.9-2003.6 四川大学化学学院分析化学专业学习,获理学硕士学位。

2003.9-2006.6 四川大学化学学院有机化学专业学习,获理学博士学位。

2006.7-2010.6 四川大学化学学院副教授,硕士生导师。

2010.7-至今   四川大学化学学院教授,2012年担任博士生导师。

2011年获教育部新世纪优秀人才计划资助;2012年获国家自然科学基金委优秀青年基金资助;2013年入选四川省学术和技术带头人后备人选;获霍英东青年教师基金资助;2015年入选第二届国家高层次人才特殊支持计划青年人才,享受国务院政府特殊津贴专家;2016年获国家杰出青年科学基金资助;2017年国家百千万人才工程入选者和有突出贡献中青年专家;2018年入选四川省学术和技术带头人;2020年获全国三八红旗手称号;2021年当选英国皇家化学会会士。

任Organic & Biomolecular Chemistry副主编,Chinese Chemical Letter和《化学学报》编委委员,《高等学校化学学报》青年执行编委,中国化学会青年工作委员会委员、中国化学会有机化学学科委员、手性化学专业委员会副主任和物理有机化学专业委员会委员。

主要研究方向

主要从事新型手性催化剂的设计合成、不对称催化反应、手性药物和生理活性化合物的高效高选择性合成研究。欢迎各位优秀学子前来报考研究生,详见课题组主页http://www.scu.edu.cn/chem_asl

请登陆TCI试剂官网查看更多内容
https://www.tcichemicals.com/CN/zh/
//www.gsbet888.com/%e5%8c%96%e5%ad%a6%e6%9d%82%e8%ae%b0/recentpaper/2024/09/%e5%87%86%e4%ba%94%e5%85%83%e7%8e%af%e8%bf%87%e6%b8%a1%e6%80%81%e6%9e%84%e5%bb%ba%e7%83%af%e4%b8%99%e5%9f%ba%e6%ac%a1%e7%a3%ba%e9%85%b0%e8%83%ba%ef%bc%9a%e7%bd%95%e8%a7%81%e7%9a%84%e7%a6%bb%e5%ad%90.html/feed 0 51215
Baidu
map