本文作者:alberto-caeiro
Ruben Martin(1976年12月),西班牙有机化学家,现就职于加泰罗尼亚化学研究所(Institute of Chemical Research of Catalonia/ICIQ),主要从事于惰性化学键的活化。图片:实验室介绍。
经历
- 01/1999-11/2003 Ph. D Research Fellow, University of Barcelona, Barcelona (Spain), Advisor: Prof. Antoni Riera Escalé;
- 01/2003-04/2003 Visiting Fellow, Max-Planck-Institut für Kohlenforschung (Germany), Advisor: Prof.Alois Fürstner;
- 01/2004-04/2005 Postdoctoral Fellow, Max-Planck-Institut für Kohlenforschung (Germany), Advisor: Prof. Alois Fürstner;
- 05/2005-08/2008 Postdoctoral Fellow, Massachusetts Institute of Technology (U. S.), Advisor: Prof.Stephen L. Buchwald;
- 09/2008-09/2013 Group Leader, Institute of Chemical Research of Catalonia(ICIQ);
- 10/2013-nowICREA Professor,Institute of Chemical Research of Catalonia(ICIQ).
获奖经历
- 2019 Parazapharma Lectureship Award;
- 2019 Boehringer Ingelheim/Yale Award;
- 2019 MIT-Merck Lectureship Award;
- 2019 Novartis Chemistry Lectureship Award;
- 2018 II Banc de Sabadell Award to Sciences and Engineering;
- 2018 IOCF Lectureship Award;
- 2018 Hirata Award;
- 2018 ChemSocRev Pioneering Investigator Lectureship Award;
- 2018 Genentech Lectureship in Organic Chemistry;
- 2018 Bristol-Myers-Squibb Lectureship;
- 2018 Pharmaron Lectureship;
- 2017 Liebig-Lectureship Award;
- 2017 OMCOS Award;
- 2017 MarcialMoreno Lectureship Award;
- 2015 RSEQ Excellent Research Award;
- 2011 ERC Starting Grant Award;
- 2011 Eli Lilly Young Research Investigator Award;
- 2011 Thieme Chemistry Journal Award;
- 2010 Sigma Aldrich RSEQ Young Research Investigator Award;
- 2008 Ramon y Cajal Award;
- 2005 MEC/Fulbright Postdoctoral Fellow;
- 2004 Alexander von Humboldt Postdoctoral Fellow.
工作介绍
1. 过渡金属催化的羧化反应及脱羧反应[1]
CO2是自然界广泛存在的一碳结构单元,可作为羧基的前体用于合成化学中,如传统的格氏试剂可与其反应得到羧酸产物。金属试剂与其反应都是当量级别的,Ruben教授则致力于催化反应的研究,实现惰性键的直接羧化反应。从早期的惰性金属试剂如锌试剂、锡试剂、硼试剂[2a]开始,逐步到C-X键[2b](sp2, sp3),不饱和的C-H键[2c](烯烃,炔烃,联烯,二烯,二炔等),C-H键官能团化羧化反应[2d]等。
在2017年,Ruben教授实现了chain-walking类型的远程C-H键羧化反应[3],该工作发表于nature中。在该篇工作中,链上任意的烷基溴在反应中通过多次β-H消除和烯烃插入的过程,移动到端位或更加稳定的C-Ni键处,继而发生羧化反应(如图1-b所示)。而如图1-c所示,C-Br键所在的位置不影响反应的选择性。
远程C-H键羧化反应 (Nature2017,545, 84-88.)
2.过渡金属催化的C-O键断裂及相应转化[4]
金属催化的C-O键断裂用于偶联反应早已有广泛的应用,但此类C-O键都比较活泼,易于氧化加成,如OTf, OMs和酯基或酰胺基(I, II)等,并且反应会产生当量的副产物,原子经济性大大降低。Ruben教授致力于简单C-O键的断裂及其后续的转化,如由苯酚得到的甲基芳基醚类。
按照反应的成键类型,其主要转化可分为3类:(1)C-C成键,传统的偶联反应如,Kumada, Suzuki, Negishi, Heck以及α-芳基化都能实现;(2)C-N成键;(3)C-X成键,此类是Ruben教授的研究重点,具体包括还原反应[5a](C-H成键),硼化[5b](C-B成键),锡化反应[5c]以及C-Si成键[5d]。
参考文献
- [1] For a review, see: A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin,Angew. Chem. Int. Ed.2018,57, 15948-15982.DOI: 10.1002/anie.201803186.
- [2] Selected examples: a. A. Correa, R. Martin,Angew. Chem. Int. Ed.2009,48, 6201-6204.doi.org/10.1002/anie.200900667; b. A. Correa, R. Martin,J. Am. Chem. Soc.2009,131, 15974-15975.doi.org/10.1021/ja905264a; c. A. Tortajada, R. Ninokata, R. Martin,J. Am. Chem. Soc.2018,140, 2050-2053.DOI: 10.1021/jacs.7b13220; d. X. Wang, J. Gallardo-Donaire, R. Martin,Angew. Chem. Int. Ed.2014,53, 11084-11087.doi.org/10.1002/anie.201407011.
- [3] F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin,Nature2017,545, 84-88.DOI: 10.1038/nature22316.
- [4] J. Cornella, C. Zarate, R. Martin,Chem. Soc. Rev.2014,43, 8081-8097.DOI: 10.1039/C4CS00206G.
- [5] Selected Examples: a. P. Álvarez-Bercedo, R. Martin,J. Am. Chem. Soc.2010,132, 17352-17353.doi.org/10.1021/ja106943q; b. C. Zárate, R. Manzano, R. Martin,J. Am. Chem. Soc.2015,137, 6754-6757.doi.org/10.1021/jacs.5b03955; c. Y. Gu, R. Martin,Angew. Chem., Int. Ed.2017,56, 3187-3190,DOI: 10.1002/anie.201611720; d. C. Zarate, R. Martin,J. Am. Chem. Soc.2014,136, 2236-2239.doi.org/10.1021/ja412107b.
本文版权属于Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
No comments yet.