作者:石油醚
本期热点研究,我们邀请到了本文第一作者,来自加州理工学院的毛润泽博士为我们分享。
2023年7月11日,JACS在线发表了来自美国加州理工学院的诺奖得主Frances H. Arnold教授课题组发表了题为「Enantio- and Diastereoenriched Enzymatic Synthesis of 1,2,3-Polysubstituted Cyclopropanes from (Z/E)-Trisubstituted Enol Acetates」的研究论文。作者通过对Arnold课题组现有的P450酶库并成功得到初始活性的酶,通过定向进化最终获得了工程酶P411-INC-5185(也被称为”动力学拆分酶”)并实现了酶催化分子间卡宾-多取代混合烯烃转移环丙烷化。
“Enantio- and Diastereoenriched Enzymatic Synthesis of 1,2,3-Polysubstituted Cyclopropanes from (Z/E)-Trisubstituted Enol Acetates
Runze Mao, Cooper S. Jamieson, Torben Rogge, Shilong Gao, Anuvab Das, Doris Mia Taylor, K. N. Houk*, and Frances H. Arnold* J. Am. Chem. Soc. 2023, ASAP. DOI:10.1021/jacs.3c04870”
这个工作的基础思想是通过蛋白质定向进化技术来搭建一座生物催化和合成化学的“桥梁”。通过这个“桥梁”,合成化学的理念可以被引入到天然生物催化,以突破后者的局限性。反之,酶催化的优势也可以助力合成化学,解决现有难题甚至填补空白。
该研究聚焦现有金属催化的不对称分子间卡宾-多取代烯烃转移环丙烷化反应对立体纯烯烃的依赖问题。1由于立体纯烯烃特别是多取代(E)-或(Z)-烯烃的合成或纯化并非易事,该问题成为了阻碍上述策略合成手性环丙烷产物的一个关键障碍。
面对这个问题,该工作的解决策略是利用工程酶催化分子间卡宾-多取代混合烯烃转移环丙烷化反应。基于酶的底物专一性特质,我们猜想这个策略有希望避免现有小分子金属催化策略对立体纯烯烃的依赖问题。2
我们团队首先筛选了Arnold课题组现有的P450酶库并成功得到初始活性。在初始酶的基础上我们进行了定向进化,最终获得了工程酶P411-INC-5185(也被称为”动力学拆分酶”)并实现了酶催化分子间卡宾-多取代混合烯烃转移环丙烷化(请看图1)。在此基础上,我们通过进一步定向进化得到了工程酶P411-INC-5186(也被称为”非对映异构体分辨酶”)。该工程酶在P411-INC-5185的基础上,通过引入单一突变W263M,获取了一个新的功能并成功实现将混合烯烃中的(Z)-或(E)-异构体专一地转化为手性环丙烷和手性支链酮产物(请看图2)。通过计算和实验相结合的方法,我们研究了工程酶P411-INC-5185和P411-INC-5186的差异,以及W263M突变对于酶活性位点的位阻改造导致的显著功能性差异。
1手性环丙烷产物是很多药物分子和天然产物的核心骨架,可以显著提高分子的生物活性。
2酶可以借助其底物专一性对混合多取代烯烃中的(E)-或者(Z)-异构体进行自动“预筛选”。
图1
图 2
2012年,我的导师Frances Arnold教授和团队第一次通过定向进化将P450工程酶应用于非天然分子间卡宾-单取代烯烃转移环丙烷化反应中 (Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes. Science 2012, 339, 307–310.)。过去的十余年中,尽管非常多的后续工作涌现出来,但还没有课题组真正的实现工程酶催化分子间卡宾-多取代混合烯烃转移环丙烷化,可以想象其中面临的挑战。所以这个研究最大的困难就是不惧怕难题,并相信定向进化和酶催化可以解决这个难题。此外,酶具备着”牵一发而动全身”的特性,因此我们常常面临着突变一个位点就导致酶完全失活的尴尬情况。
克服第一个困难的关键就是相信进化的力量,相信酶催化。第二个困难其实并不是问题,因为改变一下思路,正是由于酶具有“牵一发而动全身”的特性,我们才可以找到W263M突变点来指导酶获得截然不同的功能性。
没有感到辛苦,因为酶的卓越选择性和无限潜力每天都令我惊叹,我享受探索“定向进化和酶催化世界”的过程。“烧脑”经常有,因为我经常不理解为什么酶具有这么高的活性、选择性和可进化性,理解和探索的过程非常“烧脑”。
我希望可以借助蛋白工程技术和定向进化的力量不断地搭建连通生物催化和合成化学的“桥梁”,因为我相信工程酶具有革新传统化学合成方法和理念的潜力,我希望可以助力并加速这个过程。
定向进化和酶催化构建了一个广阔而神奇的领域。作为一位合成化学出身的研究工作者,我热切期待更多的合成化学研究人员加入我们的行列,共同搭建起通向这个领域的桥梁,扩展其广度,挖掘其潜力,并将其真正应用于实际生产中,加速传统化学的“进化”。
Q6. 致谢
特别感谢本文共同第一作者Daniel Wackelin的愉快合作,感谢Cooper S. Jamieson和Torben Rogge在加州大学洛杉矶分校 Ken Houk教授的指导下进行的计算研究,感谢Shilong Gao、Anuvab Das和Doris Taylor提供的实验支持,以及Sabine B. C.和Zhen Liu提供的富有成果的讨论和建议。衷心感谢我的导师Frances Arnold教授提供的宝贵指导。
作者教育背景简介
教育背景:
获奖经历:
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
本文作者:杉杉
近日,华东师范大学姜雪峰课题组在J. Am. Chem. Soc.发表论文,报道了Rh(I)催化卡宾(carbenoid)的串联反应,然后进行羰基化环化反应,合成多种邻甲硅烷基取代的酚类化合物(phenolics),再通过氟磺化反应(fluorosulfurylation)即可获得全取代芳炔前体。值得注意的是,炔烃末端的甲硅烷基不仅可抑制不希望的氧化,而且还可以控制CO插入的选择性。此外,该方法作为直接构建全取代芳炔的有效途径,并可用于多环芳烃分子的构建。
Rh(I)-Catalyzed Carbene Migration/Carbonylation/Cyclization: Straightforward Construction of Fully Substituted Aryne Precursors
Guohao Zhu, Wen-Chao Gao, Xuefeng Jiang*
J. Am. Chem. Soc.ASAP DOI:10.1021/jacs.0c13012
长期以来,芳炔(Arynes)由于具有出色的反应活性而作为构建功能性芳烃(arenes)的强大底物。自1953年Robert等[1]利用苯炔(benzyne)三键性质以来,已报道多种苯炔,如萘基炔、吡啶炔和吲哚炔,用于合成功能材料分子和天然产物。同时,含有全取代芳环骨架的三亚苯基(Triphenylenes),六苯并三亚苯基(hexabenzotriphenylenes)和红荧烯(rubrenes)可分别由苯炔,9,10-菲基炔和萘基炔构建。此外,苯炔也可有效地用于多环天然产物的合成,如通过吡啶炔的环加成反应获得玫瑰树碱(Ellipticine),由苯炔的串联反应构建dictyodendrin A的全取代芳烃体系(Scheme 1A)。
早期对于获得芳炔的方法,主要依赖于在碱性条件下芳基卤化物的脱卤化氢(dehydrohalogenatio)作用。随后,Kobayashi等[2]开发了一种简便合成芳炔的方法,即通过氟化物诱导2-(三甲基甲硅烷基)苯基三氟甲磺酸酯的1,2-消除,从邻卤代苯酚中获得芳炔,然后引入一种甲硅烷基取代基和离去基团(Scheme 1B)。最近,Hoye等[3]通过三炔的六脱氢-Diels-Alder(HDDA)工艺开发了一种创新的多环芳烃合成策略。
基于本课题组对过渡金属催化芳炔羰基环化反应研究 [4],作者设想是否可以通过卡宾迁移,CO插入和6π电环化的串联过程,从炔基-炔胺(yne-ynamides)中直接合成全取代的芳炔前体(Scheme 1C)。然而,两种卡宾之间的氧化竞争性和一氧化碳的插入顺序作为反应关键性的挑战。由于硅取代基的空间效应和超共轭效应,作者设计了一种含有甲硅烷基的炔基-炔胺,以抑制不希望的氧化和CO插入的选择性,同时促进了芳炔前体。
首先,作者以二炔1作为模型底物,对末端炔烃上的取代基和N-O氧化物进行了筛选(Table 1)。反应结果表明,反应受硅取代基的空间位阻以及吡啶-N-氧化物的2-位的空间和电子效应影响,当使用末端炔烃取代基为TBS的二炔底物,以Rh(COD)Cl2为催化剂,N-O-4为亲核试剂,可在60°C的THF溶剂中反应,获得82%收率的目标产物P1。
在获得上述最佳反应条件之后,作者对二炔的底物(可通过铜催化炔基溴化物的酰胺化反应制备[5])范围进行了扩展(Table 2)。首先,具有不同N-取代的磺酰基(如Ts、Ms、Bs),以76-83%的收率获得所需的酚类产物2a–2c。同时,克级实验,成功以83%的收率(1.06 g,2.5 mmol)得到2a。接下来,芳环上具有给电子和吸电子基时,均以高收率获得相应的产物2d–2i。含有各种官能团(如酯(2j),酰胺(2k)和乙酰基(2l))的底物,均具有良好的耐受性。此外,芳环上含有3,4-二取代和杂环取代的二炔底物,均能顺利进行反应,获得相应的产物2m–2q。值得注意的是,该方法可有效合成咔唑类生物碱骨架(2r和2s),并可对氨基酸、薄荷醇和雌酮进行相关的后期修饰(2t–2v)。
多环芳烃分子(PAMs)由于其在材料科学中的独特光电特性而备受关注。作者通过在乙腈溶剂中加入F–源,可使芳炔前体3a与各种二烯(如呋喃,1,3-二苯基异苯并呋喃和四环酮)的环加成反应顺利进行,得到相应的多环芳烃产物4a–4c,收率为78-92%(Table 3)。此外,各种全取代的芳烃前体与1,3-二苯基异苯并呋喃均能进行环加成反应。芳香环上的富电子和缺电子官能团均具有良好的耐受性,以85-92%的收率获得相应的产物4d–4f,其中溴取代的分子可进一步进行相关的偶联反应。同时,噻吩取代的底物,也以69%的收率获得环加成产物4g。令人兴奋的是,这些多环芳烃分子在溶液中表现出强烈的荧光,显示了在有机光电材料中的潜在应用。
为了进一步了解羰基化环化过程,作者对机理进行了研究(Scheme 2)。首先,除TBS取代基外,其他取代基也可引入在炔烃的末端上,如带有甲基和苯基的底物,分别形成28%和57%收率的氧化副产物SP-2。空间位阻的增加(R = tBu)可以防止副产物SP-2的生成,但不利于CO的插入。这些实验表明,不仅空间位阻,并且炔烃末端的电子效应在串联过程中也起着至关重要的作用(Scheme 2a)。接下来,为了在转化过程中捕获可能的乙烯酮中间体,作者将1i于标准条件下反应,并加入10当量的甲醇,分别获得38%收率的甲酯5i,26%收率的去甲硅烷基化应物6i以及微量的目标产物2i。同时,7a在标准条件下反应,仅获得61%收率的二酮产物8a,这表明第一步中的Rh卡宾不适合插入CO(Scheme 2b)。
根据上述的实验,作者提出了一种可能的反应机理(Scheme 3)。首先,催化剂Rh(I) 优先与富电子三键配位,然后受到N-氧化物的亲核进攻,获得Rh(I)卡宾中间体B(底物与吡啶N-氧化物之间的空间和电子效应可完全抑制生成氧化副产物B’)。紧接着,卡宾中间体B从苄基位迁移至甲硅烷基的α-位,得到中间体C(甲硅烷基的空间位阻效应可防止C到二酮C’的二次氧化),经CO配位和插入,得到乙烯酮中间体E,同时解离和再生Rh(I)催化剂。随后,E的6π电环化得到中间体F,经1,5-H迁移,得到环己二烯酮G。最后,芳构化经历两种可能途径:通过1,3-H迁移得到动力学目标产物(path A),而在较高温度下发生1,3-Si迁移得到热力学稳定的副产物I(path B)。
华东师范大学姜雪峰课题组报道了一种Rh(I)催化的卡宾迁移/羰基化/环化串联反应,可轻松构建全取代芳炔化合物,并在有机光电材料合成中具有巨大的潜力。此外,在该串联过程中,炔烃上的甲硅烷基的空间和超共轭效应对于通过防止卡宾中间体的氧化来控制选择性CO的插入至关重要。
本文作者alberto-caeiro
张立明,中国有机化学家,现就职于美国加州大学圣巴巴拉分校(University of California Santa Barbara)。(图片:实验室主页)
Au盐是一种活化炔烃发生亲核反应的优秀催化剂。张教授早期致力于炔丙醇酯在Au催化下的串联反应,一步构建多根C-C键或形成复杂环骨架,实现分子的重整,从简单分子得到具有合成价值的产物。(张教授课题组早期总结)如图1所示,吲哚衍生物反应可得到6-5-4-5四环结构[1],烯丙炔醇酯可到到环戊烯酮[2],炔丙醇酯更换催化剂后可得到α-亚甲基-β-二酮(α-Ylidene-β-Diketones)结构[3],由炔基重排可得到的联烯化合物也可发生此类反应,如图1中,经两步串联反应,6-6-5三环结构也是可以得到的[4]。此类Au催化反应也可与其他亲电试剂反应,汇总如图2。上述反应机理中都包括电荷分子的偶极子的存在,于是作者设计了如图3的反应,如预期的得到了[2+4]环加成产物,并对此类反应进行后续研究[5]。值得一提的是,张立明老师的第一篇文章(J. Am. Chem. Soc. 2005, 127, 16804-16805.)的作者只有自己一人。
图1:Au催化炔丙醇酯串联反应
图2:Au催化炔丙醇酯串联反应可得到结构
图3:Au催化环加成反应
随后,张教授课题组通过外加具有亲核性质的氧化剂,可直接使炔基变成α-羰基金卡宾,其中最广为利用的是吡啶氧化物,其与炔烃的反应被用作重氮化合物的等价物。此类反应被张教授称为Au催化氧化环化反应[6, 7]。而当亲核试剂布局有氧化性质时,可以其他金属试剂反应,得到形式上的偶联反应产物[8]。
张教授后续还发现在Au催化条件下,炔基可经过联烯得到共轭二烯的产物。随后根据此结果,作者做了系列的工作,如2019年JACS上的一篇工作,炔丙醇通过异构成联烯后发生分子内环化,对映选择性的得到1,4-二氢呋喃产物[9]。
被人们遗忘的金钥匙・构筑多样分子从打开碳碳键开始ー张立明教授
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
2017年、伊利诺伊大学的 M. Christina White课题组は利用铁酞菁催化剂产生的金属卡宾中间体,实现了烯丙基位/苄基位的C – H烷基化反应。
“Catalytic C(sp3)-H Alkylation via an Iron Carbene Intermediate”
Griffin, J. R.; Wendell, C. I.; Garwin, J. A.; White, M. C.* J. Am. Chem. Soc.2017, 139, 13624-13627. DOI: 10.1021/jacs.7b07602
到目前为止,虽然有很多后期过渡金属形成卡宾后进行C-H烷基化的报道,然而,通过铁催化生成铁卡宾后进行的反应,仅仅只报道了环丙烷化的应用。2002年报道了铁卡宾的C-H插入反应,然而,需要分离出化学当量的铁卡宾后,再在高温条件下进行反应,并没有实现催化剂量的C-H插入反应。
White等人认为以前的报道中[1]没有实现催化量的C-H插入是因为在高温条件下重氮酯的分解和游离卡宾反应是相互竞争的[2]。因此他们认为如果可以通过改变底物的立体位阻与电子密度,使得形成的铁卡宾能够在温和的条件下进行的话,就不会产生竞争性的副反应,这样就能够实现催化量的铁卡宾的插入反应。
作者通过筛选重氮酯与铁催化剂的反应性,发现立体位阻小的底物容易发生二聚化,而立体位阻大的底物容易转化成酮。另外对于双吸电子基团取代的重氮化合物,如果是酯取代型的底物,无法进行反应。而砜取代型底物与铁(III)酞菁的组合生成了3%的C-H插入产物。然后加入counter anion BArF4后,并且缓慢滴加底物,产率提高到了53%。单独使用铁催化剂或者NaBArF4的话,反应无法进行。
反应在烯烃α位,甲硅烷基醚α位,苄基位等处可以得到中等产率的产物。当底物中R是富电子取代基的时候,产率有提高的倾向。在使用可能产生环丙烷化产物(6元环)与C-H插入产物(5元环)的底物时,反应选择性的进行C-H插入得到5元环的产物。对(+)-Tocopherol由来的底物实现了Late-stageC-H插入。
作者认为铁催化剂与重氮底物形成铁卡宾后发生homolysis切断C-H键,然后碳自由基之间形成碳碳键。
对于上述假说,作者们进行了以下实验的验证。
重氮酯在二氯甲烷溶剂中,无催化剂条件下,仅仅通过紫外辐照可以产生游离卡宾物质与二氯甲烷发生C-H插入反应。而另一方面,在使用铁(III)酞菁的反应中,没有得到该产物,因此作者否定了该反应是经由游离卡宾进行的。
通过下述氘代底物的反应动力学对比,作者认为rate determination step在C-H插入那一步(式a)。对比分子内H/D的竞争性插入反应、可以发现随着配体酞菁上取代的氯的个数不同,得到的KIE值也不同。从这个结果可以认为该C-H插入反应与铁催化剂是相关的。继而在使用Rh2(OAc)4作为催化剂的时候KIEH/D的值变小(1.8),这个巨大的差异也表明,在使用铁催化剂的该体系并不是与铑催化一样是协同反应,而是阶段性的自由基反应(式b)[3]。
Z-型烯烃底物,在Rh2(OAc)4催化剂作用下立体构型不变(协同反应)、而在使用铁(III)酞菁催化的条件下形成了E-型烯烃。这也能从侧面证明该反应区别于普通铑催化体系,是通过阶段性的自由基反应机理进行的。同时当酞菁配体上的Cl取代个数增加的话,异构化率就变小,这是由于吸电子基团的增多导致铁卡宾变得不稳定,从而使得C-C成键更快。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
本文来自日文版介绍北京大学王剑波教授的工作 原帖,翻译投稿 alberto-caeiro
此文介绍了经金属铑双核配合物和碘化亚铜的混合催化剂催化,分子内乙烯基碳氢键的卡宾形式插入得到茚骨架的方法。
过渡金属卡宾化合物对C-H键的插入是金属卡宾的特征反应之一,通过这种插入反应,使不活泼的C-H键官能团化是一种广泛使用的方法。
在富电子C-H键中,卡宾对C(sp3)–H键的插入是经过协同机理进行的,而对于芳香族C(sp2)–H键,卡宾的插入是经过亲核取代机理进行形式上的插入反应。(图1A(b))
对烯烃的烯基位C-H键的插入反应一般是经过亲核取代反应进行的,所以会有对烯烃插入形成环丙烷的副反应发生【1】。因此,通过在难以进行环丙烷化的位置,分子内烯烃发生反应,烯基位的C-H键的卡宾插入反应得以进行。
最近de Bruin课题组开发经钴催化剂催化,o-乙烯基-N-对甲苯磺酰腙发生分子内乙烯基C-H键卡宾插入反应合成茚衍生物的方法(图1B)【2】。这个反应机理并非亲核取代机理,而是经钴自由基中间体的反应。但是,让人感到有趣的是,他们并没有使用常被用作卡宾插入反应催化剂的金属铑双核催化剂或铜催化剂的催化体系。
此次北京大学的王剑波老师在对此反应进行深入研究后,经典的金属铑双核催化剂和铜催化剂催化的体系在此类反应中得到应用,成功得到茚衍生物(图1C)。此反应和芳香族C(sp2)–H键插入反应一样,是经过亲核取代机理进行的。
图1:(A)C(sp3)-H和C(sp2)-H键卡宾插入一般机理 (B)(C)形式上卡宾插入得茚衍生物反应
Rh(II)- or Cu(I)-Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp2)-H Bond: An Access toward Substituted 1H Indenes
Zhou, Q.; Li, S.; Zhang, Y.; Wang, J.
Angew. Chem., Int. Ed. 2017, 50, 16013. DOI: 10.1002/anie.201709375;
王剑波,中国有机化学家,现为北京大学化学系教授。(图片:实验室主页)
1979-1983,南京理工大学学士。
1984-1990,北海道大学(日本)博士。
1990-1993,日内瓦大学(瑞士)博士后。
1993-1995,威斯康星大学(美国)博士后。
1995-1999,北京大学化学学院副教授。
1999年至今,北京大学化学学院教授。
王剑波老师在亲核取代机理的设想下,将含有芳基和乙烯基的o-乙烯基-N-对甲苯磺酰腙作为底物,对反应进行探索。最终发现,在Rh2(Oct)4的催化下,叔丁基钾作为碱,甲苯作为溶剂,底物在100℃下反应能够得到茚衍生物2(图2A)。
在底物拓展方面,底物1的芳香环(Ar)和乙烯基(R1, R2)上取代基为芳基或烯基时,反应仍然能有良好的收率。在一部分底物中,生成2的同时会得到2‘,但延长反应时间后,2‘能够异构化得到2。另外,便宜的CuI作为贵金属Ru的替代品,在反应中能以稍微低的产率发生相同的反应。
经氘代反应和KIE实验,得到此反应的机理如下:
在另外一种[1, 5]-H迁移中得到的2‘会在加热下继续反应,异构化得到热力学更稳定的2。
图2:(A)模板反应底物拓展 (B)反应机理
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
活性亚甲基化合物可以通过与磺酰叠氮化物反应转化为重氮化合物。
这些重氮化合物可以作为、1,3-Dipolar、或者金属卡宾的前体使用。后者可以进行Cyclopropanation与C-H卡宾插入反应。
酮的α位很多时候并不能直接反应。可以通过引入甲酰基的阶段性方法以达到目的[1]。 对于更灵敏的底物可以首先引入三氟乙酰基用于相同的目的。[2]
在碱性条件下,通过使用可廉价制备的双甾基肼试剂能够有效地将α-卤代酯转化为α-重氮酯。[3]
将叠氮化物转化为重氮化合物的试剂。[4]
※重氮化合物通常具有毒性和爆炸性,应谨慎处理。
2016年、东京工业大学的・岩澤伸治课题组、利用单纯的丙炔醚作为原料,通过产生α,β-不饱和卡宾中间体,发生[4+3]加成环化成功催化合成了7元环骨架的一系列化合物。
“Rhenium(I)-Catalyzed Generation of α,β-Unsaturated Carbene Complex Intermediates from Propargyl Ether for the Preparation of Cycloheptadiene Derivatives”
Sogo, h.; Iwasawa, N.* Angew. Chem. Int. Ed. 2016, 55, 10057-10060. DOI: 10.1002/anie.201604371
α,β-不饱和卡宾通常被用于合成三个碳单元结构,比如环丙烷化或者成环反应等[1,2]。
α,β-不饱和卡宾的催化剂生成法之一如下图所示,炔烃活化后的分子内亲核进攻(Nu)→金属电子的挤入导致丙炔上的离去基团(X)的离去[1]。在目前报道的方法学来看,在α位上有亲核(Nu)取代基的卡宾合成是比较常见的。
这一次,作者也是运用同样的机理,成功合成在α位是氢置換(Nu=H)的α,β-不饱和卡宾、然后接着发生[4+3]环化加成反应。本方法用比较容易入手的丙炔醚作为原料的出发点,是一个亮点,很期待以后该方法的更多的应用。
作者在上图中的Nu、X的设定筛选上下了功夫。换句话说就是(下图所示),通过醚的α位氢转移(=Nu)、生成的氧正离子(=X)也就是羰基正离子如果能够作为离去基团离去的话,那么就能形成α位无取代的α,β-不饱和卡宾。以这个设想为起点,作者探索了合适的催化体系。在氢转移这个过程上,可能的路线有下图所示两条路线、一条是经由π-炔烃金属螯合物的1,4-氢转移,另一条是经由vinylidene金属螯合物的1,5-氢转移。
作者通过筛选了各种具有炔烃活化能的金属催化剂后,发现PtCl2与ReX(CO)5可以得到[4+3]环化加成产物。最终作者选择了ReI(CO)52.5 mol%进行了进一步的条件的优化筛选。
适用于芳基取代,烷基取代的diene。
三级的丙炔醚能够得到高产率的产物。2级的可以得到非对映异构产物,而1级的丙炔醚会发生[4+2]加成副反应。
作者发现如果使用非二烯型的硅保护烯醚的话,生成的是烯丙基环丙烷产物。从这个现象,作者认为该反应应该是经历了卡宾对双键的加成,最终得到的环加成产物。
同时,作者使用烯烃末端氘代化后的底物,发现生成物中,氘向内部的碳移动了。从这点可以表明,该催化反应是依照经由vinylidene金属螯合物的1,5-氢转移的机理进行的。
也就是说,具体的路径应该是,首先卡宾金属配合物与烯烃双键发生环丙烷化后,再经过vinylcyclopropanation重排得到了7元环的产物。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
羰基铬上的羰基配体与有机锂试剂反应生成的醇锂,在重氮甲烷或者Meerwein试剂等hard甲基化试剂的存在下,反应生成费舍尔卡宾配合物。
由于Cr上的多个羰基配体的吸电子效应,卡宾上的碳很容易被亲核进攻。同样的,由于卡宾碳的α位的H的酸性增大(pKa~12),容易被碱拔氢。生成的阴离子可以与多种亲电子试剂反应。因此费舍尔卡宾配合物在有机合成化学上可以视作酯的等价体。
芳取代的Fischer卡宾配合物与炔烃混合加热,进行环化反应,然后通过氧化处理得到4-alkoxyphenol产物。(Dötz反应)[1]
下图所示配合物在光照下形成烯酮。然后通过Staudinger[2+2]环化,最终合成β内酰胺的应用实例。
1,1′-二芳基-2-溴代烯烃在BuLi等强碱作用下发生α消除、通过卡宾重排形成炔烃的反应。
利用此反应合成多炔:[1](炔化物中间体被亲电试剂碘甲烷捕获。产物为鬼针草中存在的天然产物)
(摘自维基百科)
1,1-二卤代环丙烷在烷基锂作用下,形成卡宾后引起重排反应,得到丙二烯的反应。
α-消除后、形成卡宾中间体引起重排。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载