本文作者:杉杉
近期,南开大学的汪清民团队在Green Chem.中发表论文,报道一种全新的三组分Minisci反应方法学,进而成功实现一系列杂芳基乙醇类分子的构建,这一全新的三组分反应策略具有温和的反应条件以及良好的合成应用价值等优势。
Visible-light-mediated three-component Minisci reaction for heteroarylethyl alcohols synthesis
Dong, F. Yue, J. Liu, H. Song, Y. Liu, Q. Wang, Green Chem. 2021, 23, 7963. doi: 10.1039/D1GC02807C.
芳乙醇骨架单元广泛存在于各类生物活性天然产物以及合成药物等分子中(Scheme 1A)。因此,芳乙醇类分子的构建已经备受诸多研究团队的广泛关注[1]-[2]。然而,对于杂芳基乙醇类分子的构建,则较少有相关的文献报道。这里,受到前期对于各类杂环芳香化合物的自由基烷基化反应 (即Minisci反应, Scheme 1B)方法学[3]-[5]以及光氧化还原催化的烯基化合物双官能团化[6]-[7]反应方法学相关研究报道的启发,南开大学的汪清民团队成功设计出一种全新的N-杂环芳香化合物、烯基化合物以及 H2O分子之间的三组分Minisci反应方法学,进而成功实现一系列杂芳基乙醇类化合物的构建 (Scheme 1C)。
首先,作者采用4-甲基喹啉1、环己烯2与H2O作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用Ir[dF(CF3)ppy]2(dtbbpy)PF6作为光催化剂,K2S2O8作为氧化剂,DMSO/水 (6:1 v /v)作为反应溶剂,36 W的蓝光LED辐射,反应温度为室温,最终获得94%收率的杂芳基乙醇产物3。
在上述的最佳反应条件下,作者首先对各类N-杂环芳香化合物的应用范围进行考察 (Table 2)。研究表明,上述的标准反应体系对于一系列在C2 或C4位置具有不同吸电子与供电子基团取代的喹啉与异喹啉衍生物,均能够顺利地参与上述的合成转化过程,并以中等至良好的反应收率以及优良的区域选择性,获得相应的杂芳基乙醇产物3–16。同时,研究发现,上述的标准反应条件对于菲啶、吡啶、苯并噻唑、嘧啶、咪唑并哒嗪以及药物分子quinoxyfen,同样能够良好地兼容。之后,该小组进一步对各类烯基化合物的底物应用范围进行深入研究。实验表明,上述的标准反应体系对于各类非环与脂环烯基化合物,均能够有效地兼容,并以中等至良好的反应收率以及高度的区域与立体选择性 (anti/syn > 20/1),获得相应的目标产物26–29。同时,作者进一步发现,将上述的标准反应条件应用于末端烯基化合物、苯乙烯、环己二烯以及2-环戊烯酮底物时,均无法获得预期的杂芳基乙醇产物。
之后,该小组通过如下的相关研究进一步表明,这一全新的三组分反应策略具有潜在的合成应用价值(Scheme 2)。
同时,作者通过自由基捕获实验 (Scheme 3)的相关研究以及HRMS的检测表明,上述的反应过程中涉及自由基中间体的参与。之后,作者发现,在氘标记实验的研究中,并未观察到产物3中的α-羟基与苄基位置存在氘原子的取代。并且,作者进一步通过light/dark实验表明,反应过程中可能涉及通过光氧化还原催化剂引发的自由基链传递步骤。
基于上述研究以及前期的文献报道[8]-[9],作者提出如下合理的反应机理 (Scheme 4)。
南开大学的汪清民团队成功设计出一种全新的三组分Minisci反应方法学,进而成功实现一系列杂芳基乙醇类分子的构建,这一全新的三组分反应策略具有广泛的底物应用范围、高度的官能团兼容性、温和的反应条件以及高度的原子与步骤经济性等优势。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
本文作者:杉杉
近日,中山大学的罗勇与薛灿课题组在ACS Catal.中发表论文,报道一种全新的通过可见光促进的磺酰胺N-S键芳基化反应方法学,进而成功完成一系列二芳基砜分子的合成。这一全新的N-S键芳基化策略具有广泛的底物范围、温和的反应条件以及高度的原子经济性等优势。
Visible-Light-Mediated Late-Stage Sulfonylation of Boronic Acids via N-S Bond Activation of Sulfonamides
J. Zhen, X. Du, X. Xu, Y. Li, H. Yuan, D. Xu, C. Xue, Y. Luo, ACS Catal. 2022, 12, 1986. Doi:10.1021/acscatal.1c05669.
磺酰胺基团广泛存在于一系列药物与商业化学品中。然而,实现磺酰胺分子中N-S键的断裂,则面临诸多挑战[1]-[2]。这里,基于采用磺酰胺作为磺酰基源 (sulfonyl source) (Scheme 1a)[3]-[4]以及本课题组前期对于可见光促进的磺酰胺N-S键官能团化方法学相关研究报道 (Scheme 1b) [5]的启发,中山大学的罗勇与薛灿课题合作报道首例通过磺酰亚胺作为磺酰基自由基源进行的N-S键后期芳基化反应方法学,进而成功获得一系列相应的二芳基砜化合物 (Scheme 1c)。
首先,作者采用1a与2-萘基硼酸2a作为模型底物,进行相关磺酰化反应条件的优化筛选(Table 1)。进而确定最佳的反应条件为:采用[Ir(ppy)2(dtbbpy)]PF6作为光催化剂,K3PO4作为碱,DCM作为反应溶剂,反应温度为40oC以及蓝光LED辐射,进而获得61%收率的N-S键芳基化产物3a。
在上述的最佳反应条件下,作者首先对各类芳基硼酸底物的应用范围进行考察 (Scheme 2)。研究表明,在苯环不同位置中具有甲基取代的苯基硼酸底物,均能够顺利参与上述的N-S键芳基化过程,并以中等至优良的反应收率,获得相应的芳基化产物3b–3e。而对于苯环不同位置中具有吸电子基团取代的苯基硼酸底物,采用CsF作为碱,同样能够获得中等收率的芳基化产物3f–3h;并且,对于苯环不同位置具有其他供电子基团取代的苯基硼酸底物,同样能够有效地兼容 (3i–3k)。同时,作者进一步发现,上述的标准反应体系,对于苯基硼酸底物苯环中具有的酯基、硫醚基团以及其他较高立体位阻基团,同样能够有效地兼容,并获得中等至良好收率的目标产物3l–3o。之后,研究发现,上述的标准反应条件对于杂芳基硼酸与多环硼酸以及烯基硼酸底物,同样能够良好地进行兼容(3p–3ai)。然而,对于对碘苯硼酸底物,则仅能够获得21%收率的产物3aj。同时,上述的最佳反应条件对于噁唑基硼酸、2,6-二甲氧基苯硼酸与烷基硼酸底物,则无法获得预期的芳基化产物3ak–3am。接下来,该小组观察到,采用1c底物时,则能够获得中等至优良反应收率的芳基化产物3an–3aq。
接下来,作者进一步对各类磺酰亚胺底物的应用范围进行深入研究 (Scheme 3)。作者发现,磺酰亚胺中的R基团为一系列具有不同供电子与吸电子基团取代的苯基、多取代芳基以及噻吩基团时,均能够获得预期的芳基化产物3ar–3be。然而,R基团为吡啶基、邻甲苯基与烷基时,则无法获得预期的目标产物3bf–3bi。此外,该小组发现,Glimepiride前体在K2CO3存在的条件下,同样能够获得54%收率的芳基化产物3bj。
同时,作者发现,这一全新的N-S键芳基化策略同样能够有效地完成相应的克级规模反应。并且,能够有效地应用于一系列磺酰胺类药物分子的后期修饰(Scheme 4)。
接下来,作者通过相关的光谱实验研究 (Scheme 5)表明,反应过程中涉及EDA配合物A的形成。同时,通过光的开/关实验 (light on/off experiment)证实,蓝光辐射在反应过程中起到关键作用,并进一步排除相应的亲核反应机理路径。
中山大学的罗勇与薛灿课题组首次报道一种全新的通过可见光促进的磺酰胺N-S键芳基化反应方法学,进而成功完成一系列二芳基砜分子的合成。这一全新的N-S键芳基化策略具有广泛的底物范围、温和的反应条件以及高度的原子经济性等优势。同时,表现出潜在的合成应用价值。
(b) Yoshida, S. Igawa, K.Tomooka, K. J. Am. Chem. Soc. 2012, 134,19358. doi: 10.1021/ja309642r.
[2] (a)Xuan, J. Li, B. Feng, Z. Sun, G. Ma, H. Yuan, Z. Chen, J. Lu, L. Xiao, W. Chem.-Asian J. 2013, 8, 1090. doi: 10.1002/asia.201300224.(b) MacKenzie, I. A. Wang, L. Onuska, N. P. R. Williams, O. F. Begam, K. Moran, A. M. Dunietz, B. D. Nicewicz, D. A. Nature 2020, 580, 76. doi: 10.1038/s41586-020-2131-1.
(c) Ozaki, T. Yorimitsu, H. Perry, G. J. P. Chem.-Eur. J. 2021, 27, 15387. doi: 10.1002/chem.202102748.
[3] P. S. Fier, K. M. Maloney, J. Am. Chem. Soc. 2019, 141, 1441. doi: 10.1021/jacs.8b11800. [4] A. Gómez-Palomino, J. Cornella, Angew. Chem., Int. Ed. 2019, 58, 18235. doi: 10.1002/anie.201910895. [5] Y. Luo, H. Ding, J. S. Zhen, X. Du, X. H. Xu, H. Yuan, Y. H. Li, W. Y. Qi, B. Z. Liu, S. M. Lu, C. Xue, Q. Ding, Chem. Sci. 2021, 12, 9556. doi: 10.1039/D1SC02266K.本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
本文作者:杉杉
近日,大连理工大学的段春迎与金云鹤课题组在Green Chemistry中发表论文,报道一种采用可见光诱导的无金属条件下的简单烷基化合物与异腈之间的C(sp3)-H键菲啶化 (phenanthridinylation)反应方法学。其中,选择H2O2作为终端氧化剂。同时,这一全新的菲啶化策略具有反应条件温和、底物应用范围广泛以及良好的选择性与反应收率等优势。值得注意的是,各类气态烷烃同样能够有效地参与上述的菲啶化过程,并获得一系列具有良好应用价值的烷基取代菲啶 (alkyl-substituted phenanthridine)衍生物。
Selective C(sp3)-H activation of simple alkanes: visible light-induced metal-free synthesis of phenanthridines with H2O2 as a sustainable oxidant
Y. Zhang, Y. Jin, L. Wang, Q. Zhang, C. Meng, C. Duan, Green Chem. ASAP. doi:10.1039/d1gc02670d.
N-杂环化合物广泛存在于各类天然产物以及生物活性分子中。同时,在新药研发过程中发挥较为重要的作用。尤其菲啶作为典型的N-杂环化合物,已经广泛应用于医药化学的相关研究,并表现出不同的生物活性,例如抗菌、抗肿瘤、细胞毒性以及抗白血病活性。在过去的十年中,选择2-异氰基联芳底物进行的自由基加成串联反应方法学,已经成为合成6-取代菲啶衍生物的一种较为实用的反应策略[1]。另一方面,简单烷基化合物,作为石油与天然气中的主要组分,广泛存在于自然界中。然而,由于其固有的分子惰性以及反应过程中化学选择性的不可调控性,因此,实现简单烷基化合物中C(sp3)-H键的直接活化,具有极高的挑战性[2]。并且,将各类烷基化合物应用于一系列重要N-杂环化合物的构建,在合成化学中同样面临巨大的挑战[3]-[6]。2014年,Cheng[4]、Huang[5]以及Liu[6]课题组分别报道采用有机过氧化物促进的简单烷基化合物与异腈之间的菲啶基化反应策略,并且,反应过程中均涉及自由基中间体 (Scheme 1a)。
近年来,可见光诱导的光氧化还原氢原子转移 (HAT)催化方法学,已经发展成为实现简单烷基化合物官能团化的一种有效策略[7]。通过这一策略,诸多课题组成功实现各类简单烷基化合物与N-杂环化合物之间的芳基化反应[8],然而,在上述策略中,仍需要采用过量的氧化剂,例如过硫酸盐、DTBP、Selectfluor以及超共价碘试剂,进而产生大量废弃的还原副产物 (Scheme 1b)。为避免上述问题,作者选择H2O2水溶液作为绿色氧化剂,并将其应用于N-杂芳基化合物与脂肪族C-H键之间的脱氢交叉偶联反应方法学的研究。基于上述的文献报道以及本课题组长期以来对于采用可见光促进的相关合成转化策略的研究。这里,本文将报道一种光催化的HAT反应策略,通过2-异氰基联芳与简单烷基化合物作为起始原料,进而在无金属试剂存在的条件下,成功实现一系列烷基取代菲啶类化合物的合成 (Scheme 1c)。其中,4-CzIPN作为光催化剂,绿色氧化剂H2O2作为具有HAT-活性的羟基自由基前体。
首先,作者采用2-异氰基-1,1′-联苯1a与环己烷2a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用4-CzIPN作为光催化剂,H2O2作为终端氧化剂,DIPEA作为添加剂,在乙腈溶剂以及30 W 395 nm LED辐射条件下进行反应,最终获得89%收率的6-环己基菲啶产物3a。
在上述的最佳反应条件下,作者首先对2-异氰基联芳底物的适用范围进行考察 (Table 2, left column)。研究表明,芳环中具有供电子与吸电子基团取代的2-异氰基联芳底物,均能较好地与上述的标准反应条件兼容,并获得相应的目标产物3a–3p,收率为58-90%。值得注意的是,通过这一全新的菲啶化策略,能够成功实现重要生物碱,即烷基取代的trisphaeridine (3p)分子的构建。同时,为进一步阐明上述菲啶化策略的合成应用价值,作者进一步进行1a (5.6 mmol, 1.00 g)与2a 之间菲啶化过程的克级规模实验研究。最终,作者发现,产物3a的收率 (1.24 g, 84.8% 反应收率)无显著降低。
接下来,该小组进一步对简单烷基底物的应用范围进行考察 (Table 2, right column)。研究表明,一系列环状与线性的烷基底物,在上述的标准反应条件下,均能够顺利地与2-异氰基联苯进行反应,并获得相应烷基取代的菲啶产物3q–3aa,收率为45-87%。同时,该小组同样对烷基底物在反应过程中,不同位置的区域异构比 (regiomeric ratio, r.r.)进行研究。实验结果 (例如3w产物中,r.r.为1.8 : 1,而3x 产物中,r.r.为1 : 1.8)表明,反应过程的区域选择性受到相应碳自由基的稳定性以及相应氢原子化学环境的控制[9]-[10]。同时,在上述的标准反应体系中,并未观察到相应一级碳自由基捕获的产物。接下来,作者发现,液化石油气 (liquid petroleum gas, LPG)中的重要组分正丁烷与异丁烷,同样能够有效地参与上述的菲啶化过程,并以中等程度的反应收率,获得相应的目标产物3z与3aa。此外,该小组进一步发现,醚类、胺类、醛以及甲酰胺底物中的C(sp2)-H键同样能够有效地参与上述的菲啶化过程,并以良好的区域选择性(对于醚以及胺类底物,反应优先在相应杂原子的α-位置进行,而对于醛类及甲酰胺底物,则优先进行C(sp2)-H键的活化)与中等至良好的反应收率,获得相应产物3ab–3ah。
接下来,为提出合理的反应机理,作者进行一系列相关的实验研究 (Scheme 2)。首先,该小组进行自由基捕获实验 (Scheme 2a)的研究。在实验过程中,作者观察到,在1a与2a的标准反应体系中加入自由基捕获剂TEMPO时,反应受到完全地抑制,并通过GC-MS以及HRMS检测出TEMPO与环己基自由基之间形成的相应加合物,进而表明反应过程中涉及自由基中间体 (Scheme 2a)。之后,作者通过 (a) 分别采用1a以及d5-1a底物,在上述的标准反应条件下形成产物d4–3a (b)采用1a与d5-1a 1 : 1的混合物,在上述的标准反应条件下形成产物d4–3a 的两种方式,对反应反应过程中C(sp2)-H键断裂的KIE进行研究。并分别通过kH/kD[11]以及PH/PD[11],测定出C(sp2)-H键断裂时的KIE数值分别为1.0与1.5。同时,作者同样通过环己烷与d12–环己烷作为反应底物,并同样采用kH/kD以及PH/PD的方式,测定出C(sp3)-H键断裂时的KIE数值为1.9与3.0 (Scheme 2b)。上述的KIE数值表明,通过自由基中间体进行的HAT过程为决速步骤,而C(sp2)-H键断裂的过程则为上述催化反应过程中的产物决定步骤 (Scheme 2b)。此外,该小组通过Stern-Volmer荧光淬灭实验 (Stern-Volmer fluorescence quenching experiment),对反应过程中的相关SET过程进行研究 (Scheme 2c)。作者发现,4-CzIPN在405 nm处激发时,能够在548 nm处观察到相应的荧光。在进一步加入DIPEA时,能够使荧光强度显著降低。同时,作者通过后续的实验研究表明,反应体系中存在的其它试剂 (例如H2O2与环己烷),则无法产生相应的荧光淬灭 (详见SI)。因此,通过Stern-Volmer荧光淬灭实验能够表明,4-CzIPN与DIPEA之间存在SET过程。接下来,作者发现,在形成产物3a时,反应过程的量子产率为0.033,进而表明自由基链反应过程对于目标产物的形成无显著贡献[12]。
基于上述的实验研究,作者提出一种合理的反应机理路径 (Scheme 3)。首先,在光辐射条件下,光催化剂4-CzIPN转化为激发态I。之后,激发态I与DIPEA通过SET过程,生成自由基II与III。同时,自由基II与H2O2再次通过SET过程,形成羟基负离子以及具有HAT-活性的羟基自由基,并伴随光催化剂4-CzIPN的再生。接下来,通过烷基化合物与羟基自由基之间的HAT过程,形成烷基自由基IV。并进一步通过IV与2a之间的自由基加成过程,形成亚胺基自由基 (imidoyl radical)V,V继续经历分子内芳基加成过程,形成自由基中间体VI。最后,中间体VI、自由基III以及羟基负离子之间,经历进一步的氧化脱氢 (oxidative dehydrogenation)过程,获得最终的目标产物3a。同时,使DIPEA再生。此外,研究发现,在反应体系中无DIPEA存在时,通过激发态光敏剂I与H2O2之间进行的能量转移 (ENT)过程,同样能够进一步获得具有HAT-活性的羟基自由基,然而,却无法进行相应的SET过程 (path B)。
大连理工大学段春迎与金云鹤课题组报道一种温和与绿色的催化体系,采用H2O2作为终端氧化剂,在可见光诱导以及无金属试剂存在的条件下,通过简单烷基化合物的C(sp3)-H键活化策略,成功完成一系列取代菲啶衍生物的合成。这一全新的菲啶化策略具有反应条件温和、环境友好、底物应用范围广泛、能够适用于气态烷烃、良好的官能团兼容性以及原料成本低廉等优势。此外,上述策略同样能够成功用于天然生物碱烷基取代trisphaeridine的合成。
(b) H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang, S. Yu, Angew. Chem. Int. Ed. 2013, 52, 13289. doi: 10.1002/anie.201308376.
(c) B. Zhang, C. G. Daniliuc, A. Studer, Org. Lett. 2014, 16, 250. doi: 10.1021/ol403256e.
(d) J. Liu, C. Fan, H. Yin, C. Qin, G. Zhang, X. Zhang, H. Yi, A. Lei, Chem. Commun. 2014, 50, 2145. doi: 10.1039/C3CC49026B.
(e) T. Xiao, L. Li, G. Lin, Q. Wang, P. Zhang, Z. Mao, L. Zhou, Green Chem. 2014, 16, 2418. doi: 10.1039/C3GC42517G.
[2] N. Gunsalus, J. A. Koppaka, S. H. Park, S. M. Bischof, B. G. Hashiguchi, R. A. Periana, Chem. Rev. 2017, 117, 8521. doi: 10.1021/acs.chemrev.6b00739. [3] (a) A. P. Antonchick, L. Burgmann, Angew. Chem. Int. Ed. 2013, 52, 3267. doi: 10.1002/anie.201209584.(b) L. Zhou, H. Togo, Eur. J. Org. Chem. 2019, 7, 1627. doi: 10.1002/ejoc.201801797.
[4] W. Sha, J. Yu, Y. Jiang, H. Yang, J. Cheng, Chem. Commun. 2014, 50, 9179. doi: 10.1039/C4CC03304C. [5] Z. Zhu, T. Wang, P. Bai, Z. Huang, Org. Biomol. Chem. 2014, 12, 5839. doi: 10.1039/C4OB01256A. [6] Z. Li, F. Fan, J. Yang, Z. Liu, Org. Lett. 2014, 16, 3396. doi: 10.1021/ol501461u. [7] (a) A. Hu, J. Guo, H. Pan, Z. Zuo, Science 2018, 361, 668. doi: 10.1126/science.aat9750.(b) H. Deng, Q. Zhou, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 12661. doi: 10.1002/anie.201804844.
(c) G. Laudadio, Y. Deng, K. van der Wal, D. Ravelli, M. Nuño, M. Fagnoni, D. Guthrie, Y. Sun, T. Noël, Science 2020, 369, 92. doi: 10.1126/science.abb4688.
(d) S. Rohe, A. O. Morris, T. McCallum, L. Barriault, Angew. Chem. Int. Ed. 2018, 57, 15664. doi: 10.1002/anie.201810187.
(e) B. J. Shields, A. G. Doyle, J. Am. Chem. Soc. 2016, 138, 12719. doi: 10.1021/jacs.6b08397.
(f) S. M. Treacy, T. Rovis, J. Am. Chem. Soc. 2021, 143, 2729. doi: 10.1021/jacs.1c00687.
(g) D. Ravelli, M. Fagnoni, T. Fukuyama, T. Nishikawa, I. Ryu, ACS Catal. 2018, 8, 701. doi: 10.1021/acscatal.7b03354.
[8] (a) C. Huang, J. Wang, J. Qiao, X. Fan, B. Chen, C. Tung, L. Wu, J. Org. Chem. 2019, 84, 12904. doi: 10.1021/acs.joc.9b01603.(b) H. Tian, H. Yang, C. Tian, G. An, G. Li, Org. Lett. 2020, 22, 7709. doi: 10.1021/acs.orglett.0c02912.
(c) X. A. Liang, L. Niu, S. Wang, J. Liu, A. Lei, Org. Lett. 2019, 21, 2441. doi: 10.1021/acs.orglett.9b00744.
(d) H. Zhao, J. Jin, Org. Lett. 2019, 21, 6179. doi: 10.1021/acs.orglett.9b01635.
(e) X. Shao, X. Wu, S. Wu, C. Zhu, Org. Lett. 2020, 22, 7450. doi: 10.1021/acs.orglett.0c02475.
[9] Y. Jin, Q. Zhang, L. Wang, X. Wang, C. Meng, C. Duan, Green Chem. 2021, ASAP. doi: 10.1039/d1gc01563j. [10] Q. An, Z. Wang, Y. Chen, X. Wang, K. Zhang, H. Pan, W. Liu, Z. Zuo, J. Am. Chem. Soc. 2020, 142, 6216. doi: 10.1021/jacs.0c00212. [11] E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066. doi: 10.1002/anie.201107334. [12] M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426. doi: 10.1039/C5SC02185E.
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
本文作者:杉杉
近日,德克萨斯大学达拉斯分校Vladimir Gevorgyan课题组在ACS Catal.上发表论文,报道了一种可见光诱导钯催化肟的C-H烷基化反应,具有温和的反应条件、高原子经济性、广泛的底物范围(各种伯、仲和叔烷基溴化物和碘化物)等优点。此外,该反应涉及烷基自由基与肟的自由基加成过程。
Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes
Nikita Kvasovs, Valeriia Iziumchenko, Vitalii Palchykov, and Vladimir Gevorgyan*
ACS Catal.2021, 11, 3749-3754. DOI: 10.1021/acscatal.1c00267
亚胺的烷基自由基加成,是合成多取代胺的有效策略。其中,此类反应依赖于化学计量自由基介体与催化Lewis酸相结合,从而实现亲核自由基对亚胺的进攻(Scheme 1a)。目前,已报道了关于光氧化还原催化[1]和金属催化氢原子转移的策略[2],从而实现此类转化。然而,对于进一步功能化依然存在一定的局限性。此外,也报道了关于肟的自由基烷基化反应[3](涉及加成/消除)(Scheme 1b)。早在1996年,Kim等[3a]将肟1′(带有磺酸盐)作为合适的自由基离去基团,但存在起始原料(1′)合成时间长且原子经济性差的问题。除少数例子外[4],这些方法依赖于化学计量锡试剂的使用。尽管存在这些弊端,但含肟的分子在合成和生物学方面具有重要的价值,因此仍需开发一种更为高效的合成策略。受本课题组[5]以及其他课题组[6]对于可见光诱导钯催化烷基Heck反应的启发,其中杂化钯C(sp3)中心的自由基可与多种烷基亲电子试剂反应。在此,德克萨斯大学达拉斯分校Vladimir Gevorgyan课题组报道了一种可见光诱导Pd催化的策略,可直接实现肟的C-H烷基化反应(Scheme 1c)。
首先,作者以甲醛肟1a和碘代环己烷2作为模型底物,进行了相关反应条件的筛选(Table 1)。反应的最佳条件为:以Pd(OAc)2为催化剂,Xantphos和PPh3为双重配体,In(OAc)3为酸添加剂,Cs2CO3为碱,可在450 nm照射下反应,获得99%收率的目标产物3。
在获得上述最佳反应条件后,作者开始对底物进行了扩展(Scheme 4)。首先,在对卤代烷的范围扩展时发现,一系列伯烷基卤化物,如末端取代基为苯基(3b)、酯(3c)、烷基醚(3d)、芳基醚(3e)、氯(3f)、烯烃(3g)、氰基(3h)、酮(3i)、三甲基硅(3j),均为有效的底物。值得注意的是,β-D-呋喃糖苷衍生物3k以及二肽衍生物3l也可以通过此方法获得,进一步证明了反应的实用性。其次,一系列仲烷基卤化物均与体系兼容,如无环取代基(3m,3n)、不同的碳环(3o–3s)、金刚烷基衍生物(3t)以及杂环衍生物(3u–3w)。值得注意的是,使用碘化物可获得更高Z构型的产物。此外,一系列叔烷基卤化物,也可顺利反应,获得相应的产物3x–3ab。值得注意的是,含环丁烯的产物3ab几乎仅具有E的选择性。然而,在与叔金刚烷基碘化物的反应中,观察到大量不可分离的Friedel-Crafts芳基化副产物,从而获得还原产物(3ac)。
随后,作者对肟的范围进行了扩展。首先,芳基上具有不同官能团,如氟、氯、三氟甲基、甲基等,均可获得高收率的相应产物4a–4f。同时,苯乙烯衍生物,也可获得优异收率的产物4g。其次,末端取代基为苯基(4h)、酯(4i)、氰基(4j)和受保护的伯胺(4k),均可顺利反应。具有仲烷氧基的底物,也为合适的底物(4l,4m)。此外,具有易于除去的SEM和BOM基团的底物,也获得中等至良好的收率的4n和4o,为获得O-未保护的肟提供了可能。
紧接着,作者对产物3进行了后期衍生化实验(Scheme 2)。首先,通过产物3可合成各类不同含氮杂环8–10。其次,肟可与亲电碳进行加成,获得11和12。此外, 3可与不同当量的NBS反应时,可能会发生部分(6)或彻底(7)脱氢。
此外,碱对于立体选择性也至关重要(Scheme 3)。对于烷基溴底物,当使用CsOPiv作为碱时,产物的E/Z可达9/1,从而表明碱可能辅助典型的β-氢化物消除。相比之下,烷基碘底物基本不影响反应的结果。
最后,作者提出了一种可能的反应机理(Scheme 5)。首先,Pd(0)配合物通过光激发再与烷基卤化物经SET后,形成烷基自由基和Pd(I)配合物A。或者Pd(0)配合物与烷基卤化物进行氧化加成和均质裂解的过程,也可形成烷基自由基和Pd(I)配合物A。紧接着,底物肟1与烷基自由基进行自由基加成,形成氮自由基中间体B。随后,中间体B经氢原子转移(HAT)可形成产物3(path a)。或者,中间体B经自由基重组,形成Pd(II)配合物C(path b)。配合物C与烷氧基胺D和PdX2盐处于平衡状态。同时,配合物C既可以经历典型的β-氢化物消除的过程(b-1),也可以通过碱辅助双分子(E2)或协同配体辅助的消除路径(b-2)。
德克萨斯大学达拉斯分校Vladimir Gevorgyan课题组报道了首例可见光诱导钯催化肟的Heck型烷基化反应。同时,该反应通过肟与烷基自由基加成的过程,从而实现了C-H功能化。此外,该反应具有温和的反应条件、高原子经济性、广泛的底物范围等优点。
本文作者:ChemBoy
最近,四川大学余达刚教授课题组在Nat. Commun.中报道了通过可见光诱导光氧化还原催化的、以CO2为羧基源,进行的吲哚类底物C2=C3双键的去芳构化芳基羧基化双官能团化反应。该报道是选择性的串联还原环化/交叉偶联反应方法学的典型代表[1],为去芳构化的双官能团化反应研究开辟了新的途径。
“Reductive dearomative arylcarboxylation of indoleswith CO2 via visible-light photoredox catalysis”
Wen-Jun Zhou, Zhe-Hao Wang, Li-Li Liao, Yuan-Xu Jiang, Ke-Gong Cao, Tao Ju, Yiwen Li,
Guang-Mei Cao & Da-Gang Yu
Nat. Commun. 2020, 11, 3263.DOI:10.1038/s41467-020-17085-9
交叉亲电偶联反应已经成为构筑C-C键的一种有力方法[2]。与传统过渡金属催化的还原偶联相比,交叉亲电偶联具有底物易得、反应操作简单与步骤经济的优势 (Fig. 1a, path i)[3]。 近年来,对于三组分的还原性偶联反应的研究已取得重大进展。通过不饱和键与两种亲电试剂之间的双官能团化反应 ,能够同时形成两种新的化学键,进而迅速构建起高度官能团化的分子骨架 (Fig. 1a, path ii)[4]。值得注意的是,如果其中一种亲电试剂能够与不饱和键实现连接,便可以通过分子内环化反应构筑新的环系[5]。在串联的还原环化交叉偶联反应中,尽管通过2e-转移过程进行的过渡金属催化,可以很好的调节反应活性与选择性。然而,将其应用于串联的还原环化交叉偶联反应中仍存在一些挑战。例如,如果不饱和键的反应活性不高,迁移插入步骤不够快,则有利于亲电试剂的本位官能团化 (Fig. 1a, path i);此外,反应过程中产生的金属有机中间体还能够进一步发生质子化、β-H消除或异构化等副反应(Fig. 1a, path iii)[1]。因此,有必要发展一种能够抑制上述副反应,且具有高度选择性的新策略,例如连续单电子转移(SSET)策略(Fig. 1b)。
基于以上设计与假设,作者首先以1-(2-溴苯甲酰基)-1H-吲哚-2-羧酸乙酯1作为模板底物,在CO2 (1 atm)气氛及可见光辐射条件下,对反应条件进行筛选优化 (Table 1)。最终,作者确定最佳的反应条件为:以4CzIPN (1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene)作为光催化剂、Cs2CO3作为碱、DIPEA作为电子供体以及采用DMSO作为反应溶剂。在上述最佳反应条件下,模板底物能够以88%的分离产率与较高的非对映选择性 (d.r. >19:1).获得相应吲哚羧酸产物2 (Table 1, entry 1)。同时,作者通过控制实验表明CO2、可见光、光催化剂与还原剂对该合成转化的顺利进行,均较为关键 (Table 1, entries 2-5);作者同样对其它类型的光催化剂如Ir-和Ru-配合物进行了进一步研究,最终发现采用这类催化剂时,目标产物产率偏低(Table 1, entries 7 and 8);用Et3N代替DIPEA作为还原剂或将DIPEA由3.0eq.减少至2.0 eq.时,观察到产率降低至75% (Table 1, entries 9 and 10);此外,研究发现,采用其它碱, 如K2CO3与KOPiv时,该反应仍然可以有效地进行,然而,目标产物产率有所降低 (Table 1, Entries 11 and 12);同时,作者发现改用DMF作为反应溶剂时,同样能够顺利获得预期的目标产物,然而,与DMSO作为反应溶剂时相比,目标产物产率有所下降 (Table 1, entry 13)。随后,作者进一步对芳基碘与芳基氯底物进行深入研究,发现与芳基溴相比,目标产物产率显著降低 (Table 1, entries 14 and 15)。并且,反应过程中未观察到芳基卤化物的本位羧基化产物。
接下来,在最佳反应条件下,作者首先对吲哚环中取代基的电子效应进行了系统研究(Fig. 3),发现在大多数底物中,反应均具有高度的非对映选择性 (>19:1 d.r)。当吲哚C2位为烷氧羰基取代时,反应活性较高 (2-4);此外,C2位为酰胺基时,同样能够以中等至良好的收率获得相应目标产物 (5-8);然而,当C2位为-Ph (9)与-Me (10)取代时,反应产率明显降低,可能源自芳基自由基与吲哚的自由基加成步骤受阻。当吲哚C2位无取代基时,反应同样能够顺利进行,并以65%的收率获得相应目标产物 (11),然而,却观察到非对映选择性出现显著降低 (11, 2:1 d.r),这表明C2位取代基的存在对于反应过程中非对映选择性的控制尤为关键。值得注意的是,当C2和C3位同时有取代基存在时,能够以中等收率与高度的非对映选择性获得具有双季碳中心的产物 (12)。另外,作者还发现在吲哚环其它位置 (如C5-、C6-)存在供电子取代基或吸电子取代基取代时,均能够以中等至良好的产率以及较高的非对映选择性获得相应目标产物 (13-20)。作者进一步研究表明,上述反应条件对于取代基的立体效应并不敏感。同时,该反应条件对于C4-位存在甲基 (21)以及 C5-以及C6-位二取代的底物 (22), 同样能够较好地兼容。
在对吲哚环中不同取代基的影响进行系统研究之后,作者接下来进一步考察芳基溴底物中取代基 (R4)的电子效应。研究表明,芳基溴的对位、间位、邻位存在甲基取代 (23-25),间位与邻位存在氟取代(26-27),二氟取代 (28),以及二甲氧基取代 (29)与杂环稠合 (30)时,均能够以中等至良好的收率、较高的非对映选择性获得相应目标产物。除芳基溴外,作者还对更加富电子的芳卤进行了深入研究 (Fig.4), 进而发现各类取代芳基溴与取代芳基碘均能够以中等至良好的产率获得相应目标产物,然而,仅获得中等程度的非对映选择性 (31-38)。
随后,作者对该方法学合成应用进行考察 (Fig. 5)。作者发现,通过延长吲哚环与芳基溴之间的碳链 (Fig. 5a),在标准反应条件下,能够分别以42% (5:1 d.r)、14% (16:1 d.r)的收率与非对映选择性获得相应的六元环 (39)与七元环 (40)产物。之后,作者进一步对模板底物进行克级放大反应研究,观察到在标准反应条件下,能够以80%的收率获得相应目标产物(Fig. 5b)。另外,作者还对产物2进行了后期衍生化研究 (Fig. 5c)。
最后,作者对反应机理进行了深入研究。首先,通过自由基捕获实验,证实反应过程涉及苄基自由基的生成 (Fig. 6a);之后,作者在N2气氛以及标准反应条件下进行氘代实验 (Fig. 6b),实验过程中发现,以DMSO-d6作为溶剂进行吲哚化合物44的反应时,未观察到C3位氘代产物45的生成,由此,可以排除通过DMSO进行氢原子转移反应的可能性。而通过加入D2O,在同样条件下进行反应时,却能够观察到有大量氘代产物45出现,进而表明反应过程中涉及苄基碳负离子的参与;而且,在略微改进的反应条件下,采用4-氟苯甲醛代替CO2作为亲电试剂时,发现能够以81%的产率获得化合物47,从而进一步证实反应过程中涉及苄基碳负离子中间体的生成 (Fig. 6c)。此外,作者进一步进行Stern-Volmer荧光猝灭实验,发现4CzIPN在λmax = 536 nm 的荧光能够通过DIPEA (斜率为512.5)的加入而十分容易地发生猝灭。而且,比加入吲哚1 (斜率为1.9)以及吲哚1与碳酸铯 (斜率17.4)的混合物时,猝灭效应更加显著。 综上实验事实,表明DIPEA优先与激发态的4CzIPN 发生SET 过程 (Fig. 7)。
基于上述研究实验与之前的研究报道,作者提出如下可能的反应机理 (Fig. 8)。首先,基态光催化剂4CzIPN (E1/2 [4CzIPN/4CzIPN•−] = −1.21 V vs. SCE in MeCN)在可见光照射下,形成激发态4CzIPN*, 激发态的光催化剂4CzIPN*通过DIPEA (E1/2Ox=+0.63 V vs. SCE in DMF)的加入,进而发生还原猝灭,生成自由基负离子4CzIPN•−与自由基正离子DIPEA•+,底物1与4CzIPN•−发生单电子还原,生成自由基负离子中间体I, 同时,使基态的 4CzIPN催化剂再生,从而完成一次催化循环。接下来,自由基负离子中间体I通过溴离子的离去,形成芳基自由基中间体II,随后,芳基自由基中间体II与吲哚的C2=C3双键发生分子内自由基加成环化,形成苄基自由基中间体III, 苄基自由基中间体III随即与4CzIPN•−发生单电子转移,生成苄基负离子中间体IV, 最后苄基中间体IV与CO2发生亲核加成,再经质子化过程,获得目标产物2。
(注:本文中所有图片均来自Nat. Commun. 2020, 11, 3263.)
四川大学余达刚教授课题组首次实现通过可见光参与的光氧化还原催化吲哚与二氧化碳之间的还原去芳构化芳基羧基化方法学。该方法学具有高度的化学选择性,能够避免芳卤的本位交叉偶联反应以及β-H消除副反应的发生;此外,该反应的反应条件温和、官能团兼容性较好、底物范围较广,能够为为常规方法较难合成的吲哚啉-3-羧酸类分子的构建提供了一种行之有效的途径。同时,作者对反应机理进行了深入研究。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
2017年、雷根斯堡大学・Burkhard König课题组、利用光催化剂的可见光敏电子传递机制 (Sensitization-Initiated Electron Transfer, SenI-ET) 生成的多环芳烃(PAH)自由基阴离子、成功构建出常规光催化剂难以实现的高还原电位的催化剂体系。
“Sensitization-Initiated Electron Transfer for Photoredox Catalysis”
Ghosh, I.; Shaikh, R. S.; König, B.* Angew. Chem. Int. Ed. 2017, 56, 8544–8549. doi:10.1002/anie.201703004
光合成化学合成体系总的来说就是将光能转化为化学自由能并利用的一种反应体系。对于植物的光合作用来说,其中用到的光能是,由天线染料(叶绿素b,β胡萝卜素等)吸收光能并将其送入反应中心色素(叶绿素a等),并且进行光合作用。通过这两个分子,使得有效地将光能转化为氧化还原电能成为可能。
在有机合成领域,近年来可见光氧化还原催化剂飞速发展,但是大多数还只是局限于光催化分子本身来吸收和转换光子。而这种情况的一个局限性再与,用光催化剂可以实现的还原电位存在上限,并且不可避免地应用范围也受到限制。
在这项工作中,König及其同事参考自然界光合成体系机制,通过光吸收分子吸收光能,然后讲光能转移到别的具有高还原能的分子上,旨在建立这样一个类生物界的新光催化体系。
经典photoredox体系、 Ru(bpy)32+单独可以实现的还原电势最大为-1.33V。另一方面,芳香族多环烃(PAHs)虽然不吸收可见光,但已知具有高还原电势(例:芘的还原电势=-2.1V vs SCE)。因此作者认为,如果能够使用Ru(bpy)32+作为可见光敏化剂和PAHs作为三重态能量受体来构建系统,那么我们可以超越原有的限制。
首先通过进行淬灭实验以鉴定可以引起Ru(bpy)32+迅速发生能量转移的多环芳烃。然后,作者证实当与芘,蒽,9,10-二苯基蒽等混合时发生浓度依赖性猝灭。该淬灭过程比来自还原剂(N,N-二异丙基乙胺,DIPEA)的激发的Ru物质的单电子还原至少快一个数量级。
另一方面,在三重态能量太高的萘或三亚苯中没有发生有效的淬火。
芳基自由基是通过芳基溴化物的一个电子还原产生的,这是以被富电子芳香环捕获反应为基准。作者在上述研究中发现的多环芳烃中,选择具有比较优异还原电势的芘,并使用以下条件进行反应讨论。即使在绿光(525nm)下也会发生反应,但需要较长时间。
在芳基溴化物中,具有高还原电位的化合物不发生反应(例如,含有5-Br代的吲哚)。根据底物不同,也可以用芳基氯或芳基三氟甲磺酸酯进行反应。通过与亚磷酸酯反应,可以往photo-Arbuzov反应展开。
作为竞争性副反应,已经证实DIEA·+和DMSO可以被芳基自由基拔氢生成苯(GC通过GC和GCMS检测到苯)。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
2014年、德国马尔堡大学・Eric Meggers等人开发了一种具有金属手性的手性可见光氧化还原催化剂,实现了2-酰基咪唑的手性α-烷基化反应的开发。(虽然这是一篇比较老的文章,但是很值得一读)
“Asymmetric photoredox transition-metal catalysis activated by visble light”
Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E.* Nature 2014, 515, 100. doi:10.1038/nature13892
可见光氧化还原催化剂与不对称催化剂,这两个催化剂进行组合使用进行的可见光驱动的不对称反应已经成为一个比较热门的课题,近年来也有一定的成果出现。而开发一种兼具这两种性质的单一催化剂,在可见光下实现不对称催化的反应在这篇论文出来前还是一个处女地。
这篇文章就是关于单一催化剂的可见光还原催化不对称反应。
而作者在同年报道了利用手性Ir路易斯酸(Λ-Ir1)催化剂对α,β-不饱和基-2-酰基咪唑的手性1.4-亲核加成反应[1]。作者萌发了这个具有金属手性中心的路易斯酸催化剂是否也可以作为可见光还原氧化剂进行自由基反应的设想,从而有了这篇文章的诞生。
首先用R1=Ph, R2=Me 的酰基咪唑为底物,2-氰基-4-硝基苄基溴作为烷基化试剂进行条件的筛选。
作者发现稍微升温到40℃,有以下优点:1. 加速配体交换, 2. 加速弱碱性条件下的烯醇化。浓度的提高有助于反应的加速,有效缩短反应时间并且提高了产率(up to 97%, 95%ee)。
同时,作者还对催化剂进行了新的摸索开发,在已知的催化剂Λ-Ir1的基础上,把原来的配体的恶唑部改成苯并噻唑合成了新的催化剂Λ-Ir2、该催化剂使得产率与手性选择性都得到了提高(up to 100%, 99%ee)。由于C-S键比C-O键更长,所以t-Bu基更加靠近配位部,更利于手性环境的构建。
作者对2-酰基咪唑的α位的取代基进行修饰发现,对单取代的芳基(吸电子・缺电子基)、萘基、噻吩都兼容。但是如果把芳香族换成甲基或者乙基的话,产率有所下降,如果用LED灯取代可见光的话,虽然产率有所改善,但是反应时间长等限制了其底物的广谱性。
烷基化试剂中Br的邻位必须是缺电子的取代基取代的,本文中只证实了溴苄或苯甲酰甲基溴是对该反应有效的。
作者在supporting中进行了多个实验进行推理,得出了下图所示的这个催化循环。其中最重要的发现是、反应中Λ-Ir2本身并不能作为可见光氧化还原催化剂、而是烯醇与催化剂Λ-Ir2形成的配位化合物作为可见光氧化还原催化剂催化进行的反应。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!
在近年来可见光催化领域的又一大新的发现或者说一个理论的应用,小编觉得十分有创新点,所以在这里向大家做一个简单的介绍。
Photo-organocatalytic Enantioselective Perfluoroalkylation of β‑Ketoesters
Łukasz Woźniak, John J. Murphy, and Paolo Melchiorre.J. Am. Chem. Soc.2015, 137, 5678−5681.DOI: 10.1021/jacs.5b03243
早在20世纪初由W.C.Macmillan开发出了配位的Ir可见光氧化还原催化剂(photo-redox catalyst),这是从高压钠灯或者UV照射到温和的可见光照射催化单电子转移的(SET-single electron transfer)一个里程碑.这类催化剂可以吸收可见光形成活化的单电子自由基来催化整个反应循环。上图给出了一个利用这类催化剂,并且配合Macmillan开发的高位阻胺催化剂进行的羰基α位的不对称三氟甲基化反应。
而在2013年,在西班牙的意大利人Paolo Melchiorre发现即使不使用photoredox catalyst也可以进行单电子转移进行自由基反应。通过各种摸索作者发现,这类反应的成功与否主要取决于底物的配对。发生分子间反应的两个底物一般来说一个是富电子的,而另一个必须是缺电子的,在反应起始阶段,两个底物首先形成EDA(electron donar-acceptor) complex,然后吸收可见光能量来激活反应。由于形成这个EDA complex是一个十分缓慢的平衡过程,所以一般该反应的时间都比较长。另外EDA complex主要是通过电子的转移也可以说倾斜形成的,往往伴有红移以及颜色的改变。
其实EDA complex的概念早在1953年就被报道发现。但是由于electron transfer是个可逆的过程,比较缓慢,所以它在化学反应中的应用一直没有得到展开。上图给出了一些EDA complex的基本概念,Donor与acceptor首先通过在溶液中的扩散相互作用接近,然后donor的电子往acceptor转移形成有颜色的EDA complex。以无色富电子TMDO与缺电子DDQ的组合为例,其两者混合在一起就能形成亮绿色混合物并且他们的吸收光波长会有显著地红移。
虽然作者提出了EDA complex这个理念,但是一直没有找到支持其这个观点的强有力证据。知道2015年上图所示这一片angew的问世。作者利用富电子的吲哚与两个硝基取代的缺电子底物进行反应,图中a)、b)分别是在溶液条件下或者是固体条件下两种底物与他们的混合物的UV波长,很明显的看出,当两种底物混合之后,他们的吸收波长有一个明显的红移。在这里,亮点在与作者得到了这个EDA complex的单晶结构(图c),通过单晶解析发现donor跟acceptor之间的距离仅仅只有3.3A左右,远远小于范德华力,从而证明了EDA complex在该反应中存在的有力证据。
上图所示的就是今天这篇论文的主旨-利用EDA complex配合手性相转移催化剂(PTC catalyst)进行的indanone-derived β-ketoesters的α手性全氟甲基化反应,虽然说该底物的相同位置的手性三氟甲基化与甲基化已经有过很多报道,但是利用EDA complex这个概念并且能够进行长链的全氟甲基化还是首例。从上面table中可以看出作为acceptor的inanone被富电子取代基取代的情况下(3g, 3h),由于比较难形成EDA complex, 所以收率很明显比其他底物要低。
对于该反应得机理,论文中基本已经给出,但是小编认为其中有个小错误,小编在这边已经自我纠正。另外其手性中间体小编也通过查阅文献在中间给出了小编的理解。首先羰基α位的酸性proton被碱脱去形成enolate IV,在这里PTC相转移催化剂有两个作用,最明显的就是稳定enolate anion,还有一个就是形成手性离子中间体IV, 而该中间体与碘化全氟烷混合后,enolate anion与全氟碘化烷基形成halogen键,并且enolate 氧的电子转移到全氟碘化烷基的sigma反键轨道,进行活化该轨道形成EDA complex中间体V,吸收波长发生红移,吸收可见光能量发生单电子转移(SET),诱发形成最关键的全氟烷基自由基。然后与中间体IV反应形成VI, 在这里有个小问题就是VI到底能不能与全氟碘化烷进行单电子转移再生全氟烷基自由基,如果是这样,那么一旦反应诱发后,因为全氟烷基自由基可以通过中间体VI再生,所以就不需要光照就能自发进行。所以在这步,编者对作者给出的机理解析有点疑问。接下来就是如图所示的消除脱去碘得到产物。
最近几年可见光催化的自由基反应逐渐成为热点之一。尤其是选择性的自由基反应是大家所追逐的热点。作者利用EDA complex的概念应用于一系列的反应,虽然该反应收底物限制与反应速率限制很大,但是不失为可见光自由基反应的一大里程碑反应。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载!