作者:杉杉
近期,上海交通大学的张书宇课题组在Nat. Commun.中发表论文,报道一种全新的区域选择性铜催化含有氨基喹啉导向基团的非活化内烯烃与偶氮二甲酸酯的氧化烯丙基C-H胺化反应方法学,进而成功完成一系列脂肪族烯丙基胺分子的构建。其中,偶氮二甲酸酯作为氮源与亲电氧化剂在烯丙基C-H活化中具有双重作用。
Cooperative Cu/azodiformate system catalyzed allylic C–H amination of unactivated internal alkenes directed by aminoquinoline
L. Wang, C. Wang, Z. Li, P. Lian, J. Kang, J. Zhou, Y. Hao, R. Liu, H. Bai, S. Zhang, Nat. Commun. 2024, 15, 1483. doi: s41467-024-45875-y.
烯丙基胺骨架广泛存在于各类生物活性分子中 (Fig. 1)。近些年来,诸多研究团队已经成功设计出多种钯催化烯丙基C-H键的活化反应方法学[1](Fig. 2a)。同时,大多数过渡金属催化烯丙基C-H胺化反应的底物范围主要集中于环状烯烃或端烯烃[2](Fig. 2b)。然而,对于内烯烃参与的烯丙基C-H胺化反应方法学,目前却较少有相关的研究报道[3]。受到近年来导向基团促进非活化烯烃的双官能团化反应方法学[4]、利用偶氮二甲酸酯进行C-N键的构建[5]以及利用偶氮二甲酸酯作为氧化剂[6]相关研究报道的启发,这里,上海交通大学的张书宇课题组报道一种全新的区域选择性铜催化含有氨基喹啉导向基团的非活化内烯烃与偶氮二甲酸酯的氧化烯丙基C-H胺化反应方法学,进而成功完成一系列脂肪族烯丙基胺分子的构建 (Fig. 2c)。
首先,作者采用含有氨基喹啉导向基团的内烯烃衍生物1a与偶氮二甲酸二乙酯2a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用CuCl作为催化剂,在DCE反应溶剂中,反应温度为90 oC,最终获得94%收率的产物3a。
在上述的最佳反应条件下,作者对一系列内烯烃底物 (Table 2)的应用范围进行深入研究。
之后,该小组通过如下的一系列研究进一步表明,这一全新的胺化策略具有潜在的合成应用价值 (Fig. 3)。
接下来,作者对上述胺化过程的反应机理进行进一步研究 (Fig. 4)。此外,作者通过相关的DFT计算对反应机理与区域选择性的起源进行了研究 (Fig. 5)。
基于上述的实验研究,作者提出如下合理的反应机理 (Fig. 6)。
上海交通大学的张书宇课题组报道一种全新的区域选择性铜催化含有氨基喹啉导向基团的非活化内烯烃与偶氮二甲酸酯的氧化烯丙基C-H胺化反应方法学,进而成功完成一系列脂肪族烯丙基胺分子的构建。这一全新的胺化合成转化策略具有操作简单、底物范围广泛、优良的官能团兼容性、优良的区域选择性以及优异E/Z选择性等优势。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载.
作者:石油醚
本期热点研究,我们邀请到了本文第一作者,来自UCLA的和志奇博士为我们分享。
2023年08月24日,Sciecne在线发表了来自UCLA的Ohyun Kwon教授团队题为「Aminodealkenylation: Ozonolysis and copper catalysis convert C(sp3)–C(sp2) bonds to C(sp3)–N bonds」的研究论文。作者利用与π-键相邻的C(sp2)–C(sp3) σ-键,在温和的条件下,通过臭氧化反应和铜催化,使烯烃的C(sp3)–C(sp2) σ-键断裂并重新构建C(sp3)–N 键,得到了分子骨架解构重组的脱烯胺化产物。通过这样的非传统转化,利用自然界丰富的萜类天然产物中的烯烃官能团,可以合成具有高潜在生物活性的非天然萜类生物碱和复杂的手性胺化合物。并且工业上廉价的cumene process副产物,α-甲基苯乙烯,发展为甲基化试剂,一步直接与核苷反应生成表观遗传学中重要的甲基化核苷原料。这样的方法也被用于激素、药物中间体、多肽和核苷的后期修饰或合成。通过动力学研究,揭示了一种一直被忽略的铜离子对协同催化机理。
“Aminodealkenylation: Ozonolysis and copper catalysis convert C(sp3)–C(sp2) bonds to C(sp3)–N bonds
Zhiqi He, Jose Antonio Moreno, Manisha Swain, Jason Wu, Ohyun Kwon*
Science, 2023, 381, 877-886. DOI: 10.1126/science.adi4758”
从易得的起始原料出发,发展高效合成策略,制备重要的有机化合物一直是合成化学的研究重点。相较于从简单原料出发的通过官能团转化/偶联的汇聚式合成构建复杂产物策略,直接从复杂化合物出发,针对分子骨架进行解构重组(deconstructive construction/synthesis)构建目标产物有时会更为高效。脂肪胺和含氮杂环在天然产物、药品、农药以及其他生物活性化合物中广泛存在。当前的新药研发对合成更为复杂的三维结构手性胺的需求逐渐增加,这也促使着各种高效构建C(sp3)–N键方法的发展。
烯烃广泛存在于石油化工和天然产物中,通过烯烃来制备脂肪胺一直以来都是研究热点,而烯烃中的π-键作为活泼官能团通常是构建新的C(sp3)–N键的反应位点。本工作基于2019年课题组发展的脱烯氢化反应(Science 2019, 364, 681–685)发展了全新的烯烃胺化策略。我们的策略是通过烯烃在醇溶剂中的臭氧化反应,生成过氧中间体。其中较为活泼的O–O键(BDE ~ 45 kcal/mol)可以提供驱动力在被单电子还原的情况下变成烷基氧自由基。随后烷氧自由基触发C–C键裂解,将原本的烯烃解构成活泼并且多用途的烷基自由基中间体。一价铜催化剂可在这个过程中充当单电子供体生成二价铜,而二价铜可以捕获烷基自由基进而促进C(sp3)–N键偶联,从而得到了分子骨架解构重组的脱烯胺化产物。这样的方法也被用于激素、药物中间体、多肽和核苷的后期修饰或合成。并且通过这样的非传统转化,利用自然界丰富的萜类天然产物中的烯烃官能团,可以合成具有高潜在生物活性的非天然萜类生物碱和复杂的手性胺化合物。尤其是一些较为昂贵的手性胺生物活性中间体,传统合成路径较为繁琐。而使用脱烯胺化方法,直接使用大量易得且具有一定复杂度的天然萜类衍生物进行解构胺化,可将合成路线简化,这也为合成化学提供了新的手段和思路。同时,工业上廉价易得的烯烃,比如说cumene process副产物,α-甲基苯乙烯,在脱烯胺化反应中可以作为良好的甲基化试剂,一步直接与核苷反应生成表观遗传学中重要的甲基化核苷原料,例如m6A。最后,在机理研究中,人们总是认为中性的[(Phen)CuL]是铜和1,10-菲啰啉的组合的催化活性物种,其离子对形式[(Phen)2Cu]+ [CuCl2]–通常被人们所忽视。本工作中,通过研究不同的铜化合物,还有[(Phen)2Cu]+和[CuCl2]–分别对C–C键断裂和C–N键生成的的影响,证实了铜离子对协同催化机理是存在并且可行的。这一结论可以让人们重新思考,相关铜催化过程中的机理,并且为已发表相关论文中提出的催化机理,尤其是没有经过实验正式仅简单推测的催化循环,提供了重新审视的理论基础。
我感觉一开始做动力学实验时是最困难的。这个反应速度快,通常10分钟内就反应完了,所以不方便取样测量,因为操作不过来,样品点太少。又由于体系里面有含有铜离子,所以不能用原位核磁实时监测反应。我们的产物分子量大,气相色谱又出不来。所以我一开始只能用最笨的方法,将反应极度稀释来降低反应速率,达到可以取样测量的程度,然后过滤硅胶柱除掉铜盐,再用核磁测产率。最后大概稀释了25倍,才是一个可以操作的反应速率。但是这个时候铜非常稀,3毫克的CuCl溶在75 mL的乙腈里面,浓度是400 ppm。这就导致溶剂里面微量的氧气都有可能氧化一价铜物种,所以我每次做这个实验前都是新鲜蒸馏,然后再做冻抽,即使是这样也时常发现结果不重现。如果CuCl+Phen被氧化,最终结果将使得速率变慢,或者开始慢后来快的S形曲线,甚至出现induction period。而且由于反应浓度稀,每次取样3 mL才能用装备有冷冻探头的核磁扫描64次拿到信号强度足够的氢谱。而且内标也是个问题,我试过将内标提前加入到反应中,发现要不内标对反应有影响,要不反应对内标有影响,总共试过四五种内标都不太好,最终只能配好的内标溶液,在快速的取样过滤之后加入相同体积的内标溶液,这里还必须保证样品体积和内标溶液体积一样,也就是那3 mL反应液要快速准确的取出。感觉操作非常繁琐,而且经常遇到数据不好的情况。这个用核磁方法研究动力学足足做了7个多月,实验强度大,数据到最后也不是很满意。所以我也是一直想找其他方法来分析反应。
后来也是一个契机,Mettler Toledo来UCLA,我们跟他们表明需要他们的技术支持,于是他们在去年10月底给我们寄过来一台ReactIR。由于之前7个月把做这个动力学实验中需要注意的细节都摸清楚了,第一次用,只一周时间就把原来7个月都没做好的实验做完了,而且数据质量显著提高,重现性好。但是这次demo test只有一周时间,于是我们再次跟他们联系,他们表示12月有大量空闲机时,我们就趁着这一个月,拿到了现在文章上的所有数据。而且用ReactIR监测反应的时候,MeOAc的峰很明显,这也给我一个同时研究C–C断裂和C–N生成的手段。而且一个月时间相对宽裕,我才能深入的探索铜离子对中正负离子的功能以及对反应的影响。
就是在用ReactIR得到靠谱数据后发现这些数据又很离谱。我们用VTNA方法分析了反应底物以及催化剂的反应级数(在文章中有部分总结, SI-section8中可以看到更全的底物和催化剂的具体反应级数)发现都是一些非常规的反应级数,比如(CuCl+Phen)对C–C键断裂和C–N生成均是1.3级。当保持CuCl为4 mol%时,Phen从2 mol% – 4mol%是0级,但是Phen从4 mol% – 8mol%时表现为–5级。然后 [(Phen)2Cu]+和[CuCl2]–在不同浓度下有不同动力学级数,并且对C–C键断裂和C–N生成也有不同的动力学级数,比如说,固定[(Phen)2Cu]+用量为0.5 mol%的时候,[CuCl2]–对C–C键断裂和C–N生成表现为2级反应,但是当[(Phen)2Cu]+用量为2 mol%时,[CuCl2]–对C–C键断裂和C–N生成表现为1.3级反应;固定使用2 mol% [CuCl2]–时,[(Phen)2Cu]+使用量为0.1 mol%到0.5 mol%时对C–C键断裂表现为0级对C–N生成表现为1级,但是[(Phen)2Cu]+使用量为0.5 mol%到2.0 mol%时对C–C键断裂表现为–0.3级对C–N生成表现为0级。所以当时如何将这些动力学级数合理化并且推导出反应速率方程的过程确实非常烧脑。今年1月初归还了ReactIR之后一直没做实验,天天在构建反应模型,然后推导动力学公式,用了一个半月才建立了一个粗糙的模型,详细分析过程以及推导过程都写在了SI的10.1 和10.2章,也希望大家能多交流指正。
其实有机化学的相关方向我都想学习,想学一些交叉学课,比如化学生物学,有机材料,机器学习啥的,但是申请这些方向课题组时人家都不理我。目前在搞塑料降解相关的研究,以后大概率还要回到有机方法学及其延申的方向。
我想鼓励年轻的研究生和博士后们在科研生活中坚持追求自己的兴趣,保持对科学的热情和好奇心,勇敢面对挑战,因为探索的道路充满了发现和惊喜。
教育背景:
2007-2011年:中国农业大学,本科
2011-2016年:北京大学,博士,导师:黄湧教授
2016-2019年:北京大学,研究助理,导师:黄湧教授
2019-2023年:UCLA,博士后,导师:Ohyun Kwon
2023-:UW-Madison,博士后,导师:Shannon S. Stahl
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载.
作者:杉杉
近日,浙江大学的麻生明等团队在Chem. Sci.中发表论文,合作报道一种全新的通过铜催化剂参与的TMSCN与5-alkynyl fluorosulfonamides之间的炔丙基C-H官能团化反应方法学,进而成功完成一系列官能团化联烯分子的构建。
Copper-catalyzed propargylic C-H functionalization for allene Syntheses
D.Zhang, J.Fan, Y. Shi, Y. Huang, C. Fu, X. Wu, S. Ma, Chem. Sci. 2023, ASAP. doi: 10.1039/D3SC01501G.
目前,炔丙醇衍生物与各类有机金属试剂之间的催化偶联反应方法(Fig. 1A)[1]-[2]的相关研究已经备受有机合成化学家的广泛关注。这里,受到近年来对于惰性炔丙基C-H键直接官能团化反应方法学 (Fig. 1B)[3]以及采用1,5-HAT路径获得炔丙基自由基 (Fig. 1C)[4]相关研究报道的启发,浙江大学的麻生明等团队合作报道一种全新的通过铜催化剂参与的TMSCN与5-alkynyl fluorosulfonamides之间的炔丙基C-H官能团化反应方法学 (Fig. 1D)。
首先,作者采用fluorosulfonamides衍生物1a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用Cu(CH3CN)4PF6作为催化剂,L1作为配体,CH3CN作为反应溶剂,反应温度为30 oC,最终获得相应的炔丙基C-H官能团化产物2a。
在上述的最佳反应条件下,作者分别对一系列fluorosulfonamides底物 (Fig. 2)的应用范围进行深入研究。
之后,该小组通过对于1,n-HAT路径反应可能性的研究发现,上述的反应过程中涉及1,6-HAT过程 (Fig. 3)。
同时,该小组通过如下的一系列研究进一步表明,这一全新的C-H官能团化策略具有潜在的合成应用价值 (Fig. 4)。
接下来,作者对上述C-H官能团化过程的反应机理进行进一步研究 (Fig. 5)。
基于上述的实验研究,作者提出如下合理的反应机理 (Fig. 6)。
同时,该小组对于上述的炔丙基C-H官能团化反应过程中的对映选择性控制进行初步尝试 (Fig. 7)。
总结:浙江大学的麻生明课题组成功设计出一种全新的通过铜催化剂参与的TMSCN与5-alkynyl fluorosulfonamides之间的炔丙基C-H官能团化反应方法学,进而成功完成一系列官能团化联烯分子的构建。这一全新的炔丙基C-H官能团化策略具有广泛的底物应用范围、优良的官能团兼容性以及优良的化学与区域选择性等优势。
[1] S. Liu, Y. Tanabe, S. Kuriyama, Y. Nishibayashi, Angew. Chem., Int. Ed. 2021, 60, 11231. doi:10.1002/anie.202102779.
[2] H. Wang, H. Qian, J. Zhang, S. Ma, J. Am. Chem. Soc. 2022, 144, 12619. doi: 10.1021/jacs.2c04931.
[3] J. Zhu, Y. Wang, A. D. Charlack, Y. Wang, J. Am. Chem. Soc. 2022, 144, 15480. doi: 10.1021/jacs.2c07297.
[4] R. Lu, T. Yang, X. Chen, W. Fan, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2021, 143, 14451. doi: 10.1021/jacs.1c07190.
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
作者:石油醚
本期热点研究,我们邀请到了本文第一作者,来自加州大学尔湾分校的博士生王铭浩为我们分享。
2023年6月30日, J. Am. Chem. Soc在线发表了来自美国加州大学尔湾分校Vy M. Dong教授团队题为「Copper-Catalyzed Hydroamination: Enantioselective Addition of Pyrazoles to Cyclopropenes」的研究论文。Vy M. Dong教授从另一个角度——铜氨化反应机理出发,从而实现手性C-N键的构筑。在此篇工作中,讨论了手性环丙基吡唑化合物的合成,实现了较高的立体选择性和区域选择性。
Copper-Catalyzed Hydroamination: Enantioselective Addition of Pyrazoles to Cyclopropenes
Minghao Wang, Julie C. Simon, Mengfei Xu, Stephanie A. Corio, Jennifer S. Hirschi*, and Vy M. Dong* J. Am. Chem. Soc., 2023, ASAP, doi:10.1021/jacs.3c02971”
吡唑在内的各类含氮杂环是药物分子和农药分子等高价值有机分子中的常见结构,而金属催化的氢氨化反应是修饰含N杂环和构筑C-N键的重要合成手段。近年来,不对称铜氢化反应机理的发展为这一类反应提供了更加经济、环保的金属催化剂。在这一基础上,我们希望从另一个角度——铜氨化反应机理出发,从而实现手性C-N键的构筑。在这篇工作中,我们讨论了手性环丙基吡唑化合物的合成,实现了较高的立体选择性和区域选择性。
最大的困难应该是关于机理的研究。在实验得到速率方程之后,我们对机理有了大概的认识,但有一些细节上的把握仍较为模糊,特别是关于五元铜氨化过渡态的研究。幸运的是,与Jennifer S. Hirschi教授的合作,让我们的理论获得了DFT计算的数据支撑,从而完成了对机理的初步论证。
环丙烯化合物是一类具有较高活性的不饱和烯烃,在初期的条件优化过程中,我获得了大量的开环烯丙基吡唑副产物。通过对条件的不断优化,尤其是配体的筛选,我们最终幸运拿到了合适的条件。
未来我会对杂环化学进行进一步探索。
在实验不顺的时候不要被沮丧打败,多多思考和坚持,最重要的是相信自己
教育背景:
2020 南开大学, 本科
2020-至今 加州大学尔湾分校, 博士
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
作者:石油醚
本期热点研究,我们邀请到了本文第一作者,来自武汉大学的陈才友教授为我们分享。
2023年3月31日,Nature在线发表了来自美国加州理工学院Gregory C. Fu教授团队题为「Copper-Catalyzed Enantioconvergent Alkylation of Oxygen Nucleophiles」的研究论文。陈才友/Gregory C. Fu教授通过引入Cu/手性噁唑啉催化剂,成功实现了alpha-卤代二级酰胺与一系列的氧亲核试剂(广泛的酚、醇等)的不对称C-O成键反应。此外,该催化体系除了能实现不对称C-O成键反应外,还能高效实现不对称C-N成键反应,其中包括挑战性的苯胺和未保护的烷基胺与烷基亲电试剂的C-N成键反应。
“ Copper-Catalyzed Enantioconvergent Alkylation of Oxygen Nucleophiles”
Caiyou Chen & Gregory C. Fu*
Nature, 2023, ASAP, doi: 10.1038/s41586-023-06001-y”
C-O键广泛地存在于包括药物、生物活性分子和材料分子等有机化合物中,因而C-O键的高效构建在有机合成中极为重要。在药物合成中,杂原子的烷/芳基化是使用率最高的反应,而C-O键的构建在杂原子的烷/芳基化中使用的频率最高,其出现的频次约占被报道的研究工作的9%-21%。最为高效的构建C-O键的方法之一是氧亲核试剂的烷基化反应(Williamson反应)。然而,Williamson反应有很大的局限性,不能适用于二级以上的亲电试剂等含有大位阻的反应底物,同时也不能用于手性C-O键的构建。不对称Williamson反应非常具有挑战性,目前没有相关报道。
Cu/噁唑啉催化的立体汇聚C-O成键反应
陈才友/Gregory C. Fu教授通过引入Cu/手性噁唑啉催化剂,成功实现了alpha-卤代二级酰胺与一系列的氧亲核试剂(广泛的酚、醇等)的不对称C-O成键反应。此外,该催化体系除了能实现不对称C-O成键反应外,还能高效实现不对称C-N成键反应,其中包括挑战性的苯胺和未保护的烷基胺与烷基亲电试剂的C-N成键反应。该体系能用于合成广泛的手性烷基醚和胺类化合物,其中包括直接合成IMPDH抑制剂和手性除草剂萘普草。
反应动力学、电子顺磁共振、DFT计算等机理研究表明,手性C-O及C-N键的构建涉及Cu(III)机制,其中经历自由基历程。此外,反应可能经历另一种涉及氮丙啶酮中间体的途径,该途径可以解释外消旋的背景反应和不对称催化反应的反应速率相当时为何催化体系仍然能取得优异的对映选择性。
该体系由于能同时实现挑战性的不对称C-O和C-N键的构建,并且使用廉价的丰产金属Cu和可商业获得的手性噁唑啉配体为催化剂,将为手性胺类和醚类化合物的高效合成打开快速发展的大门。
这项研究最大的困难是催化体系的构建。不对称C-O成键反应极具挑战性,目前没有相关研究报道,构建手性C-O键的关键是高效的不对称催化体系。我们选择a-溴代二级酰胺作为亲电试剂,尝试了多达100种配体,最终找到中间碳原子上未取代的手性噁唑啉配体为最优配体。该催化剂体系既能高效实现不对称C-O成键,也能高效实现不对称C-N成键。
这项研究耗时最长的是前期催化体系的构建以及反应机理的研究上。在反应机理的研究中,我们发现背景反应很严重,而且背景反应的反应速度为催化反应的四分之一,然而我们依然能获得高达99%的ee值。这个实验结果困扰了我们很久,后来我们发现背景反应是邻基参与效应促进的,会经历氮丙啶酮中间体过程,而催化剂能快速与氮丙啶酮中间体反应转化成手性产物,因而虽然背景反应很严重,但是反应的对映选择性仍然很好。
独立研究的工作主要是基于催化剂开发导向的光促进廉价金属和稀土金属的不对称催化。
作为研究者,持之以恒的坚持是重大发现的前提和基础。
教育背景:
2012 武汉大学 学士
2017 武汉大学 博士 (导师:张绪穆教授)
2017-2022 加州理工学院 博士后 (导师:Gregory C. Fu和Jonas C. Peters)
相关介绍:
陈才有,武汉大学化学与分子科学学院教授,博士生导师,课题组长,2022年入选国家海外高层次人才引进计划,同年入选湖北省海外高层次人才计划。2022年7月加入武汉大学开展独立研究工作,课题组的研究方向廉价金属和稀土金属的不对称光催化、手性催化剂开发、药物绿色合成、反应机理研究和DFT理论计算等。迄今以第一作者(含共同第一作者)身份在Nature (2篇); J. Am. Chem. Soc.; Angew. Chem. Int. Ed.; Acc. Chem. Res.; Chem. Sci.等杂志上发表论文18篇,共发表论文 30余篇,同时发表5篇授权专利,其发展的基于二茂铁的手性双膦配体以武汉大学冠名为Wudaphos。2017年,受邀参加第67届德国Lindau诺贝尔奖获得者大会;2022年,受邀参加第四届“世界顶尖科学家大会”。曾荣获2017年度“武汉大学十大学术之星”称号。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
作者:杉杉
近日,西班牙ICIQ的R. Martin课题组在Angew. Chem. Int. Ed.中发表论文,报道一种全新的通过铜催化剂促进的采用一系列酮衍生的PA (pro-aromatic)二氢喹唑啉酮 (dihydroquinazolinone)底物参与的C(sp3)-胺化反应方法学,进而成功完成一系列脂肪胺分子的构建。
Copper-Catalyzed C(sp3)-Amination of Ketone-Derived Dihydroquinazolinones by Aromatization-Driven C-C Bond Scission
X.Lv, R.Abrams, R. Martin, Angew. Chem. Int. Ed. 2022, ASAP. doi: 10.1002/anie.202217386.
脂肪胺骨架广泛存在于一系列药物活性分子中 (Scheme 1)。目前,已经成功设计出多种构建C(sp3)-N键的合成转化策略[1]-[3]。然而,对于通过催化剂促进的酮C-C键断裂策略,进而构建C(sp3)-N键的反应方法学,却较少有相关的文献报道[4]-[5]。这里,受到近年来对于选择PA (pro-aromatic)试剂参与的催化sp3–芳基化/烷基化以及三氟甲基化反应方法学[6] (Scheme 2, middle)相关研究报道的启发,西班牙ICIQ的R. Martin课题组报道一种全新通过铜催化剂促进的采用一系列酮衍生的PA (pro-aromatic)二氢喹唑啉酮 (dihydroquinazolinone)底物参与的C(sp3)-胺化反应方法学 (Scheme 2, bottom)。
首先,作者采用吲唑 (indazole)1a与二氢喹唑啉酮衍生物2a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用Cu(MeCN)4PF6作为催化剂,L3作为配体,BzOOtBu作为氧化剂,K3PO4作为添加剂,苯作为反应溶剂,反应温度为55 oC,最终获得89%收率的脂肪胺产物3a。
在上述的最佳反应条件下,作者分别对一系列二氢喹唑啉酮底物 (Scheme 3)以及N-亲核试剂 (Scheme 4)的应用范围进行深入研究。
之后,该小组通过如下的一系列研究进一步表明,这一全新的胺化策略具有潜在的合成应用价值 (Scheme 5 and Scheme 6a)。
接下来,作者通过一系列相关的控制实验 (Scheme 6b)研究表明,二氢喹唑啉酮骨架的氧化过程中涉及烷基自由基的形成。Cu-I在4u与2a的烷基化过程中表现出较为显著的催化活性 (Scheme 6c)。
基于上述的实验研究以及前期相关的文献报道[8]-[9],作者提出如下合理的反应机理 (Scheme 7)。
西班牙ICIQ的R. Martin课题组成功设计出一种全新的通过铜催化剂促进的采用一系列酮衍生的PA (pro-aromatic)二氢喹唑啉酮底物参与的C(sp3)-胺化反应方法学,进而成功完成一系列脂肪胺分子的构建。这一全新的C(sp3)-胺化策略具有广泛的底物应用范围、优良的官能团兼容性、温和的反应条件以及优良的化学选择性等优势。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
本文作者:杉杉
导读:
近日,南开大学的朱守非课题组在Angew. Chem. Int. Ed.中发表论文,报道首例采用手性铜(I)/双噁唑啉催化体系促进的通过1-硅基环丙烯原位形成的α-silylcarbene参与的高度区域、立体与对映选择性B-H键插入反应方法学,进而成功完成一系列手性γ,γ-二取代烯丙基偕硅基硼烷 (γ,γ-disubstituted allylic gem-silylboranes)分子的构建。
Highly Regio-, Stereo-, and Enantioselective Copper-Catalyzed B-H Bond Insertion of α-Silylcarbenes: Efficient Access to Chiral Allylic gem-Silylboranes
R. Andres, Q. Wang, J. Zhu,
M. Huang, Y. Zhao, C. Zhang, S. Zhu, Angew. Chem. Int. Ed. 2022, ASAP. doi: 10.1002/anie.202203343.
具有良好稳定性的α-silylcarbene已经广泛应用于一系列对映选择性silylcarbene转移反应方法学的相关研究,进而成功完成一系列手性有机硅烷分子的构建[1]-[2]。然而,通过α-silylcarbene参与的carbene转移[3]以及对映选择性插入反应[4]方法学,目前却极少有相关的文献报道 (Scheme 1a)。这里,受到本课题组前期对于铜催化接促进的环丙烯衍生的α-vinylcarbene参与的B-H插入反应方法学[5]相关研究报道的启发,南开大学的朱守非课题组成功设计出一种全新的采用手性铜(I)/双噁唑啉催化体系促进的通过1-硅基环丙烯原位形成的α-silylcarbene参与的高度区域、立体与对映选择性B-H键插入反应方法学。
首先,作者采用1-硅烷基环丙烯衍生物1a与硼烷加合物2a作为模型底物,进行相关反应条件的优化筛选(Table 1)。进而确定最佳的反应条件为:采用Cu(MeCN)4PF6作为催化剂,L9作为手性配体,苯作为反应溶剂,反应温度为22-25oC,最终获得88%收率的B-H键插入产物3aa (95% ee)。
在上述的最佳反应条件下,作者分别对一系列硼烷底物以及硅基环丙烯底物的应用范围进行深入研究(Scheme 2)。
之后,该小组通过如下的一系列研究进一步表明,这一全新的对映选择性B-H键插入策略具有潜在的合成应用价值 (Scheme 3)。
接下来,作者通过氘标记实验研究表明,反应过程中涉及carbene中间体的形成 (Scheme 4a)。同时,该小组进一步通过KIE实验的相关研究表明,氢转移步骤为快速反应步骤 (Scheme 4b)。之后,作者通过原位红外光谱对于反应级数的进一步研究发现,metal carbene的形成可能作为上述反应过程中的决速步骤(Scheme 4c)。接下来,该小组发现,上述的对映选择性B-H键插入过程中存在显著的(+)-NLE (positive nonlinear effect),进而表明单核Cu(I)•L9配合物[6]并非上述反应过程中的活性催化剂 (Scheme 4d)。
基于上述的实验研究以及前期相关的文献报道[7],作者提出如下合理的反应机理 (Scheme 5)。
南开大学的朱守非课题组成功开发出首例采用手性铜(I)/双噁唑啉催化体系促进的对映选择性B-H键插入反应方法学,进而成功完成一系列手性γ,γ-二取代烯丙基偕硅基硼烷分子的构建。这一全新的对映选择性B-H键插入策略具有良好的底物范围、高度的区域选择性、立体选择性以及对映选择性高等优势。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
本文作者:杉杉
近日,临沂大学的杨文强课题组在Angew. Chem. Int. Ed.中发表论文,报道一种全新的通过铜催化剂促进的动态动力学芳基C-P交叉偶联/环化反应方法学,进而成功完成一系列具有P-立体生成中心 (P-stereogenic)的P-杂环分子的构建。
Copper-Catalyzed Dynamic Kinetic C–P Cross-Coupling/Cyclization for Concise Asymmetric Synthesis of Six-, Seven- and Eight-Membered P-Stereogenic Phosphorus Heterocycles
Y.Li, X.Jin, P. Liu, H. Zhang, X. Yu, Y. Liu, B. Liu, W. Yang, Chem. Int. Ed. 2022, ASAP. doi: 10.1002/anie.202117093.
手性P-杂环化合物目前已经广泛应用于不对称催化领域的相关研究[1]。同时,对于手性P-杂环骨架构建的相关反应方法学研究,目前已经有诸多的文献报道 (Figure 1a) [2]-[3]。然而,对于具有P-立体生成中心 (P-stereogenic)的P-杂环分子构建 (Figure 1b),却较少有相关的研究报道[4]。这里,受到近年来对于催化对映选择性C-P交叉偶联/环化反应方法学相关研究报道[5]-[9]的启发,临沂大学的杨文强课题组报道一种全新的通过铜催化剂促进的H-次膦酸酯 (H-phosphinates)的动态动力学C-P交叉偶联/环化反应方法学,进而成功完成一系列具有P-立体生成中心(P-stereogenic) P-杂环分子的构建。
首先,作者采用1a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用CuI作为催化剂,L6作为手性配体,K2CO3作为碱,MeCN作为反应溶剂,反应温度为室温,最终获得96% 收率的手性产物2a (96% ee)。
在上述的最佳反应条件下,作者对一系列H-次膦酸酯 (Scheme 1 and Scheme 2)底物的应用范围进行深入研究。
同时,该小组发现,将反应温度升高至40oC时,底物5a、5b与7均能够顺利地参与上述的动态动力学芳基C-P交叉偶联/环化反应过程,并以中等至良好的反应收率以及高度的对映选择性 (90-98% ee),获得相应的八元P-杂环手性分子6a、6b与8。
之后,该小组通过如下的一系列研究进一步表明,这一全新的对映选择性交叉偶联/环化策略具有潜在的合成应用价值 (Scheme 4)。
基于一系列相关的实验研究 (参阅SI)以及前期的文献报道[10]-[11],作者提出如下合理的反应机理 (Figure 2)。
总结:临沂大学的杨文强课题组报道一种全新的采用铜催化剂促进的对映选择性分子内C-P交叉偶联/环化反应方法学,进而成功完成一系列六、七、八元环P-立体生成中心含磷杂环分子的构建。这一全新的对映选择性合成转化策略具有温和的反应条件、良好的反应收率以及优良的对映选择性等优势。
本文作者:杉杉
近日,中科院大连化物所与Leibniz催化研究所的吴小锋课题组在Angew. Chem. Int. Ed.中发表论文,报道一种全新的通过铜催化剂促进的采用烷基卤参与的双羰基化以及单羰基化反应方法学,进而成功完成一系α-酮酰胺以及酰胺分子的构建。
Copper-Catalyzed Substrate-Controlled Carbonylative Synthesis of α-Keto Amides and Amides from Alkyl Halides
Zhao, H. Ai, X. Wu, Angew. Chem. Int. Ed. 2022, ASAP. doi: 10.1002/anie.202200062.
近年来,采用CO作为C1-砌块进行的过渡金属催化羰基化反应方法学[1]-[2],尤其通过钯催化剂促进的双羰基化反应方法学[3]-[5]的相关研究已经备受有机合成化学家的广泛关注 (Scheme 1,eq a)。然而,对于钯催化剂参与的各类烷基碘底物的双羰基化反应方法学[6]以及将烷基溴应用于羰基化学[7]的相关研究,却较少有相关的文献报道。这里,中科院大连化物所与Leibniz催化研究所的吴小锋研究团队成功设计出一种全新的通过铜催化剂促进的采用烷基卤参与的双羰基化以及单羰基化反应方法学。
首先,作者采用1-溴丁烷1a与吗啉2a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用CuBr作为催化剂,bpy作为配体,Co2(CO)8作为添加剂,Cs2CO3作为碱,1,4-二氧六环作为反应溶剂,CO压力为40 bar,反应温度为80oC,最终获得74%收率的α-酮酰胺产物3a。
在上述的最佳反应条件下,作者进一步对上述的双羰基化过程中一系列烷基溴底物以及胺底物的应用范围进行如下研究 (Scheme 2)。
同时,作者发现,在采用烷基碘底物时,能够同时进行相应的双羰基化与单羰基化反应过程 (详见Supporting Information Table S2与Table S3)。之后,作者通过对反应条件的进一步优化,研究表明:采用Cu(OAc)2与bpy催化体系,Cs2CO3作为碱,CO压力为60 bar,1,4-二氧六环作为反应溶剂,反应温度为50oC,优先进行相应的双羰基化过程;而采用CuBr(Me2S)与bpy催化体系,Cs2CO3作为碱,CO压力为40 bar,1,4-二氧六环作为反应溶剂,反应温度为50oC,反应温度为110oC,则优先进行相应的单羰基化过程。
在获得上述最佳反应条件之后,作者分别对上述烷基碘与胺底物之间的双羰基化 (Scheme 3)与单羰基化(Scheme 4)过程中的底物应用范围进行深入研究。
之后,该小组进一步对上述的羰基化策略的合成应用价值进行深入研究(Schemes 5-6)。
接下来,作者通过自由基捕获实验 (Scheme 7a)的相关研究表明,反应过程中可能涉及烷基自由基与酰基自由基的形成。同时,在烷基溴活化之前,CO同样可能作为配体与铜中心进行配位。之后,该小组通过自由基抑制实验 (Scheme 7b)以及自由基钟实验的研究 (Scheme 7c)进一步证实,上述的羰基化反应过程中涉及自由基中间体的参与。之后,该小组通过竞争实验发现,反应过程中,烷基碘底物的活化速率显著高于相应的烷基溴底物(Scheme 7d)。
基于上述的实验研究以及前期相关的文献报道[5]-[6],作者提出如下合理的反应机理 (Scheme 8)。
中科院大连化物所与Leibniz催化研究所的吴小锋课题组报道一种全新的通过铜催化剂促进的采用烷基卤参与的双羰基化以及单羰基化反应方法学,进而成功完成一系α-酮酰胺以及酰胺分子的构建。这一全新的羰基化策略具有良好地反应收率、广泛的底物应用范围以及优良的官能团兼容性等优势。
本文版权属于 Chem-Station化学空间, 欢迎点击按钮分享,未经许可,谢绝转载
本文作者:杉杉
近日,临沂大学的杨文强课题组在Angew. Chem. Int. Ed.中发表论文,报道一种全新的通过铜催化剂促进的动态动力学芳基C-P交叉偶联/环化反应方法学,进而成功完成一系列具有P-立体生成中心 (P-stereogenic)的P-杂环分子的构建。
Copper-Catalyzed Dynamic Kinetic C–P Cross-Coupling/Cyclization for Concise Asymmetric Synthesis of Six-, Seven- and Eight-Membered P-Stereogenic Phosphorus Heterocycles
Y.Li, X.Jin, P. Liu, H. Zhang, X. Yu, Y. Liu, B. Liu, W. Yang, Chem. Int. Ed. 2022, ASAP. doi: 10.1002/anie.202117093.
手性P-杂环化合物目前已经广泛应用于不对称催化领域的相关研究[1]。同时,对于手性P-杂环骨架构建的相关反应方法学研究,目前已经有诸多的文献报道 (Figure 1a) [2]-[3]。然而,对于具有P-立体生成中心 (P-stereogenic)的P-杂环分子构建 (Figure 1b),却较少有相关的研究报道[4]。这里,受到近年来对于催化对映选择性C-P交叉偶联/环化反应方法学相关研究报道[5]-[9]的启发,临沂大学的杨文强课题组报道一种全新的通过铜催化剂促进的H-次膦酸酯 (H-phosphinates)的动态动力学C-P交叉偶联/环化反应方法学,进而成功完成一系列具有P-立体生成中心(P-stereogenic) P-杂环分子的构建。
首先,作者采用1a作为模型底物,进行相关反应条件的优化筛选 (Table 1)。进而确定最佳的反应条件为:采用CuI作为催化剂,L6作为手性配体,K2CO3作为碱,MeCN作为反应溶剂,反应温度为室温,最终获得96% 收率的手性产物2a (96% ee)。
在上述的最佳反应条件下,作者对一系列H-次膦酸酯 (Scheme 1 and Scheme 2)底物的应用范围进行深入研究。
同时,该小组发现,将反应温度升高至40oC时,底物5a、5b与7均能够顺利地参与上述的动态动力学芳基C-P交叉偶联/环化反应过程,并以中等至良好的反应收率以及高度的对映选择性 (90-98% ee),获得相应的八元P-杂环手性分子6a、6b与8。
之后,该小组通过如下的一系列研究进一步表明,这一全新的对映选择性交叉偶联/环化策略具有潜在的合成应用价值 (Scheme 4)。
基于一系列相关的实验研究 (参阅SI)以及前期的文献报道[10]-[11],作者提出如下合理的反应机理 (Figure 2)。
临沂大学的杨文强课题组报道一种全新的采用铜催化剂促进的对映选择性分子内C-P交叉偶联/环化反应方法学,进而成功完成一系列六、七、八元环P-立体生成中心含磷杂环分子的构建。这一全新的对映选择性合成转化策略具有温和的反应条件、良好的反应收率以及优良的对映选择性等优势。